These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
316 related articles for article (PubMed ID: 10801974)
1. Structure and mechanism of mammalian thioredoxin reductase: the active site is a redox-active selenolthiol/selenenylsulfide formed from the conserved cysteine-selenocysteine sequence. Zhong L; Arnér ES; Holmgren A Proc Natl Acad Sci U S A; 2000 May; 97(11):5854-9. PubMed ID: 10801974 [TBL] [Abstract][Full Text] [Related]
2. Three-dimensional structure of a mammalian thioredoxin reductase: implications for mechanism and evolution of a selenocysteine-dependent enzyme. Sandalova T; Zhong L; Lindqvist Y; Holmgren A; Schneider G Proc Natl Acad Sci U S A; 2001 Aug; 98(17):9533-8. PubMed ID: 11481439 [TBL] [Abstract][Full Text] [Related]
3. Mammalian thioredoxin reductase: oxidation of the C-terminal cysteine/selenocysteine active site forms a thioselenide, and replacement of selenium with sulfur markedly reduces catalytic activity. Lee SR; Bar-Noy S; Kwon J; Levine RL; Stadtman TC; Rhee SG Proc Natl Acad Sci U S A; 2000 Mar; 97(6):2521-6. PubMed ID: 10688911 [TBL] [Abstract][Full Text] [Related]
4. Essential role of selenium in the catalytic activities of mammalian thioredoxin reductase revealed by characterization of recombinant enzymes with selenocysteine mutations. Zhong L; Holmgren A J Biol Chem; 2000 Jun; 275(24):18121-8. PubMed ID: 10849437 [TBL] [Abstract][Full Text] [Related]
5. Rat and calf thioredoxin reductase are homologous to glutathione reductase with a carboxyl-terminal elongation containing a conserved catalytically active penultimate selenocysteine residue. Zhong L; Arnér ES; Ljung J; Aslund F; Holmgren A J Biol Chem; 1998 Apr; 273(15):8581-91. PubMed ID: 9535831 [TBL] [Abstract][Full Text] [Related]
6. Thioredoxin reductase from Plasmodium falciparum: evidence for interaction between the C-terminal cysteine residues and the active site disulfide-dithiol. Wang PF; Arscott LD; Gilberger TW; Müller S; Williams CH Biochemistry; 1999 Mar; 38(10):3187-96. PubMed ID: 10074374 [TBL] [Abstract][Full Text] [Related]
7. Mammalian thioredoxin reductase is irreversibly inhibited by dinitrohalobenzenes by alkylation of both the redox active selenocysteine and its neighboring cysteine residue. Nordberg J; Zhong L; Holmgren A; Arnér ES J Biol Chem; 1998 May; 273(18):10835-42. PubMed ID: 9556556 [TBL] [Abstract][Full Text] [Related]
8. A mechanistic investigation of the C-terminal redox motif of thioredoxin reductase from Plasmodium falciparum. Snider GW; Dustin CM; Ruggles EL; Hondal RJ Biochemistry; 2014 Jan; 53(3):601-9. PubMed ID: 24400600 [TBL] [Abstract][Full Text] [Related]
9. Identification and conformer analysis of a novel redox-active motif, Pro-Ala-Ser-Cys-Cys-Ser, in Drosophila thioredoxin reductase by semiempirical molecular orbital calculation. Kuwahara M; Tamura T; Kawamura K; Inagaki K Biosci Biotechnol Biochem; 2011; 75(3):516-21. PubMed ID: 21389620 [TBL] [Abstract][Full Text] [Related]
10. Selenium as an electron acceptor during the catalytic mechanism of thioredoxin reductase. Lothrop AP; Snider GW; Ruggles EL; Patel AS; Lees WJ; Hondal RJ Biochemistry; 2014 Feb; 53(4):654-63. PubMed ID: 24422500 [TBL] [Abstract][Full Text] [Related]
11. Inhibition of thioredoxin and thioredoxin reductase by 4-hydroxy-2-nonenal in vitro and in vivo. Fang J; Holmgren A J Am Chem Soc; 2006 Feb; 128(6):1879-85. PubMed ID: 16464088 [TBL] [Abstract][Full Text] [Related]
13. Crystal structures of oxidized and reduced mitochondrial thioredoxin reductase provide molecular details of the reaction mechanism. Biterova EI; Turanov AA; Gladyshev VN; Barycki JJ Proc Natl Acad Sci U S A; 2005 Oct; 102(42):15018-23. PubMed ID: 16217027 [TBL] [Abstract][Full Text] [Related]
14. Physiological functions of thioredoxin and thioredoxin reductase. Arnér ES; Holmgren A Eur J Biochem; 2000 Oct; 267(20):6102-9. PubMed ID: 11012661 [TBL] [Abstract][Full Text] [Related]
15. Studies of an active site mutant of the selenoprotein thioredoxin reductase: the Ser-Cys-Cys-Ser motif of the insect orthologue is not sufficient to replace the Cys-Sec dyad in the mammalian enzyme. Johansson L; Arscott LD; Ballou DP; Williams CH; Arnér ES Free Radic Biol Med; 2006 Aug; 41(4):649-56. PubMed ID: 16863998 [TBL] [Abstract][Full Text] [Related]
16. Human thioredoxin reductase from HeLa cells: selective alkylation of selenocysteine in the protein inhibits enzyme activity and reduction with NADPH influences affinity to heparin. Gorlatov SN; Stadtman TC Proc Natl Acad Sci U S A; 1998 Jul; 95(15):8520-5. PubMed ID: 9671710 [TBL] [Abstract][Full Text] [Related]
17. Structural and biochemical studies reveal differences in the catalytic mechanisms of mammalian and Drosophila melanogaster thioredoxin reductases. Eckenroth BE; Rould MA; Hondal RJ; Everse SJ Biochemistry; 2007 Apr; 46(16):4694-705. PubMed ID: 17385893 [TBL] [Abstract][Full Text] [Related]
18. Thioredoxin reductase is irreversibly modified by curcumin: a novel molecular mechanism for its anticancer activity. Fang J; Lu J; Holmgren A J Biol Chem; 2005 Jul; 280(26):25284-90. PubMed ID: 15879598 [TBL] [Abstract][Full Text] [Related]
19. The mechanism of high Mr thioredoxin reductase from Drosophila melanogaster. Bauer H; Massey V; Arscott LD; Schirmer RH; Ballou DP; Williams CH J Biol Chem; 2003 Aug; 278(35):33020-8. PubMed ID: 12816954 [TBL] [Abstract][Full Text] [Related]
20. Selenocysteine, identified as the penultimate C-terminal residue in human T-cell thioredoxin reductase, corresponds to TGA in the human placental gene. Gladyshev VN; Jeang KT; Stadtman TC Proc Natl Acad Sci U S A; 1996 Jun; 93(12):6146-51. PubMed ID: 8650234 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]