These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 10802100)

  • 21. Influences of daylength and temperature on the period of diapause and its ending process in dormant larvae of burnet moths (Lepidoptera, Zygaenidae).
    Wipking W
    Oecologia; 1995 May; 102(2):202-210. PubMed ID: 28306875
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adult locomotor rhythmicity as "hands" of the maternal photoperiodic clock regulating larval diapause in the blowfly, Calliphora vicina.
    Kenny NA; Saunders DS
    J Biol Rhythms; 1991; 6(3):217-33. PubMed ID: 1773093
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Why is the number of days required for induction of adult diapause in the linden bug Pyrrhocoris apterus fewer in the larval than in the adult stage?
    Hodkova M
    J Insect Physiol; 2015 Jun; 77():39-44. PubMed ID: 25891916
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Separate oscillating cell groups in mouse suprachiasmatic nucleus couple photoperiodically to the onset and end of daily activity.
    Inagaki N; Honma S; Ono D; Tanahashi Y; Honma K
    Proc Natl Acad Sci U S A; 2007 May; 104(18):7664-9. PubMed ID: 17463091
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Different mechanisms of phase delays and phase advances of the circadian rhythm in rat pineal N-acetyltransferase activity.
    Illnerová H; Vanĕcek J; Hoffmann K
    J Biol Rhythms; 1989; 4(2):187-200. PubMed ID: 2519588
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hyperprolinemic larvae of the drosophilid fly, Chymomyza costata, survive cryopreservation in liquid nitrogen.
    Kostál V; Zahradnícková H; Šimek P
    Proc Natl Acad Sci U S A; 2011 Aug; 108(32):13041-6. PubMed ID: 21788482
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Asymmetric control of short day response in European hamsters.
    Monecke S; Malan A; Wollnik F
    J Biol Rhythms; 2006 Aug; 21(4):290-300. PubMed ID: 16864649
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Diapause induction and clock mechanism in the cabbage beetle, Colaphellus bowringi (Coleoptera: Chrysomelidae).
    Wang X; Ge F; Xue F; You L
    J Insect Physiol; 2004 May; 50(5):373-81. PubMed ID: 15121450
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Circadian clock genes link photoperiodic signals to lipid accumulation during diapause preparation in the diapause-destined female cabbage beetles Colaphellus bowringi.
    Zhu L; Tian Z; Guo S; Liu W; Zhu F; Wang XP
    Insect Biochem Mol Biol; 2019 Jan; 104():1-10. PubMed ID: 30423421
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sympatric Drosophilid species melanogaster and ananassae differ in temporal patterns of activity.
    Prabhakaran PM; Sheeba V
    J Biol Rhythms; 2012 Oct; 27(5):365-76. PubMed ID: 23010659
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Tug-of-War between Cryptochrome and the Visual System Allows the Adaptation of Evening Activity to Long Photoperiods in Drosophila melanogaster.
    Kistenpfennig C; Nakayama M; Nihara R; Tomioka K; Helfrich-Förster C; Yoshii T
    J Biol Rhythms; 2018 Feb; 33(1):24-34. PubMed ID: 29179610
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photoperiodic control of diapause in Pseudopidorus fasciata (Lepidoptera: Zygaenidae) based on a qualitative time measurement.
    Hua A; Yang D; Wu S; Xue F
    J Insect Physiol; 2005 Nov; 51(11):1261-7. PubMed ID: 16137697
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of photoperiod and temperature on diapause induction in Conogethes punctiferalis (Lepidoptera: Pyralidae).
    Xu LR; Ni X; Wang ZY; He KL
    Insect Sci; 2014 Oct; 21(5):556-63. PubMed ID: 23956155
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Moonlight shifts the endogenous clock of Drosophila melanogaster.
    Bachleitner W; Kempinger L; Wülbeck C; Rieger D; Helfrich-Förster C
    Proc Natl Acad Sci U S A; 2007 Feb; 104(9):3538-43. PubMed ID: 17307880
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Model and Non-model Insects in Chronobiology.
    Beer K; Helfrich-Förster C
    Front Behav Neurosci; 2020; 14():601676. PubMed ID: 33328925
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Short-day response in Djungarian hamsters of different circadian phenotypes.
    Schöttner K; Schmidt M; Hering A; Schatz J; Weinert D
    Chronobiol Int; 2012 May; 29(4):430-42. PubMed ID: 22515562
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of the circadian eclosion rhythm between non-diapause and diapause pupae in the onion fly, Delia antiqua: the change of rhythmicity.
    Watari Y
    J Insect Physiol; 2005 Jan; 51(1):11-6. PubMed ID: 15686641
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Remodelling of membrane phospholipids during transition to diapause and cold-acclimation in the larvae of Chymomyza costata (Drosophilidae).
    Kostál V; Berková P; Simek P
    Comp Biochem Physiol B Biochem Mol Biol; 2003 Jul; 135(3):407-19. PubMed ID: 12831761
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assembling a clock for all seasons: are there M and E oscillators in the genes?
    Daan S; Albrecht U; van der Horst GT; Illnerová H; Roenneberg T; Wehr TA; Schwartz WJ
    J Biol Rhythms; 2001 Apr; 16(2):105-16. PubMed ID: 11302553
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Using Per gene expression to search for photoperiodic oscillators in the hamster suprachiasmatic nucleus.
    de la Iglesia HO; Meyer J; Schwartz WJ
    Brain Res Mol Brain Res; 2004 Aug; 127(1-2):121-7. PubMed ID: 15306128
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.