These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 10802101)

  • 1. Oxygen levels in the gut lumens of herbivorous insects.
    Johnson KS; V Barbehenn R
    J Insect Physiol; 2000 Jun; 46(6):897-903. PubMed ID: 10802101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antioxidant defenses in caterpillars: role of the ascorbate-recycling system in the midgut lumen.
    Barbehenn RV; Bumgarner SL; Roosen EF; Martin MM
    J Insect Physiol; 2001 Apr; 47(4-5):349-57. PubMed ID: 11166299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phenolic compounds in red oak and sugar maple leaves have prooxidant activities in the midgut fluids of Malacosoma disstria and Orgyia leucostigma caterpillars.
    Barbehenn R; Cheek S; Gasperut A; Lister E; Maben R
    J Chem Ecol; 2005 May; 31(5):969-88. PubMed ID: 16124227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antioxidant enzymes in Spodoptera littoralis (Boisduval): are they enhanced to protect gut tissues during oxidative stress?
    Krishnan N; Kodrík D
    J Insect Physiol; 2006 Jan; 52(1):11-20. PubMed ID: 16242709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linking phenolic oxidation in the midgut lumen with oxidative stress in the midgut tissues of a tree-feeding caterpillar Malacosoma disstria (Lepidoptera: Lasiocampidae).
    Barbehenn RV; Maben RE; Knoester JJ
    Environ Entomol; 2008 Oct; 37(5):1113-8. PubMed ID: 19036189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fenton-type reactions and iron concentrations in the midgut fluids of tree-feeding caterpillars.
    Barbehenn R; Dodick T; Poopat U; Spencer B
    Arch Insect Biochem Physiol; 2005 Sep; 60(1):32-43. PubMed ID: 16116620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating ascorbate oxidase as a plant defense against leaf-chewing insects using transgenic poplar.
    Barbehenn RV; Jaros A; Yip L; Tran L; Kanellis AK; Constabel CP
    J Chem Ecol; 2008 Oct; 34(10):1331-40. PubMed ID: 18773241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Semiquinone and ascorbyl radicals in the gut fluids of caterpillars measured with EPR spectrometry.
    Barbehenn RV; Poopat U; Spencer B
    Insect Biochem Mol Biol; 2003 Jan; 33(1):125-30. PubMed ID: 12459207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrolyzable tannins as "quantitative defenses": limited impact against Lymantria dispar caterpillars on hybrid poplar.
    Barbehenn RV; Jaros A; Lee G; Mozola C; Weir Q; Salminen JP
    J Insect Physiol; 2009 Apr; 55(4):297-304. PubMed ID: 19111746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of midgut bacterial diversity in tropical caterpillars (Lepidoptera: Saturniidae) fed on different diets.
    Pinto-Tomás AA; Sittenfeld A; Uribe-Lorío L; Chavarría F; Mora M; Janzen DH; Goodman RM; Simon HM
    Environ Entomol; 2011 Oct; 40(5):1111-22. PubMed ID: 22251723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Allocation of cysteine for glutathione production in caterpillars with different antioxidant defense strategies: a comparison of Lymantria dispar and Malacosoma disstria.
    Barbehenn RV; Kochmanski J; Menachem B; Poirier LM
    Arch Insect Biochem Physiol; 2013 Oct; 84(2):90-103. PubMed ID: 24038202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of dietary allelochemicals on gypsy moth (Lymantria dispar) caterpillars: importance of midgut alkalinity.
    Appel HM; Schultz JC; Govenor HL
    J Insect Physiol; 1997 Nov; 43(12):1169-1175. PubMed ID: 12770489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequestration of host plant carotenoids in the larval tissues of Helicoverpa zea.
    Eichenseer H; Murphy JB; Felton GW
    J Insect Physiol; 2002 Mar; 48(3):311-318. PubMed ID: 12770105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gut-based antioxidant enzymes in a polyphagous and a graminivorous grasshopper.
    Barbehenn RV
    J Chem Ecol; 2002 Jul; 28(7):1329-47. PubMed ID: 12199499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tannin sensitivity in larvae ofMalacosoma disstria (Lepidoptera): Roles of the peritrophic envelope and midgut oxidation.
    Barbehenn RV; Martin MM
    J Chem Ecol; 1994 Aug; 20(8):1985-2001. PubMed ID: 24242724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature and food quality effects on growth, consumption and post-ingestive utilization efficiencies of the forest tent caterpillar Malacosoma disstria (Lepidoptera: Lasiocampidae).
    Levesque KR; Levesque KR; Fortin M; Mauffette Y
    Bull Entomol Res; 2002 Apr; 92(2):127-36. PubMed ID: 12020370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Digestive proteinases of larvae of the corn earworm, Heliothis zea: characterization, distribution, and dietary relationships.
    Lenz CJ; Kang J; Rice WC; McIntosh AH; Chippendale GM; Schubert KR
    Arch Insect Biochem Physiol; 1991; 16(3):201-12. PubMed ID: 1799675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gut pH, redox conditions and oxygen levels in an aquatic caterpillar: potential effects on the fate of ingested tannins.
    Gross EM; Brune A; Walenciak O
    J Insect Physiol; 2008 Feb; 54(2):462-71. PubMed ID: 18171578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gut redox conditions in herbivorous lepidopteran larvae.
    Appel HM; Martin MM
    J Chem Ecol; 1990 Dec; 16(12):3277-90. PubMed ID: 24263429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antioxidant defense of the midgut epithelium by the peritrophic envelope in caterpillars.
    Barbehenn RV; Stannard J
    J Insect Physiol; 2004 Sep; 50(9):783-90. PubMed ID: 15350499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.