These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
75 related articles for article (PubMed ID: 10802167)
41. Early inhibition of mycobacterial growth by human alveolar macrophages is not due to nitric oxide. Aston C; Rom WN; Talbot AT; Reibman J Am J Respir Crit Care Med; 1998 Jun; 157(6 Pt 1):1943-50. PubMed ID: 9620931 [TBL] [Abstract][Full Text] [Related]
42. An efficient and high-yielding method for isolation of RNA from mycobacteria. Bashyam MD; Tyagi A Biotechniques; 1994 Nov; 17(5):834-6. PubMed ID: 7530978 [No Abstract] [Full Text] [Related]
43. Rapid mycobacteria drug susceptibility testing using Gel Microdrop (GMD) Growth Assay and flow cytometry. Akselband Y; Cabral C; Shapiro DS; McGrath P J Microbiol Methods; 2005 Aug; 62(2):181-97. PubMed ID: 16009276 [TBL] [Abstract][Full Text] [Related]
44. Further studies on African strains of Mycobacterium tuberculosis: comparison with M. bovis and M. microti. Pattyn SR; Portaels F; Spanoghe L; Magos J Ann Soc Belges Med Trop Parasitol Mycol; 1970; 50(2):211-27. PubMed ID: 4996738 [No Abstract] [Full Text] [Related]
45. Modified immunohistological staining allows detection of Ziehl-Neelsen-negative Mycobacterium tuberculosis organisms and their precise localization in human tissue. Ulrichs T; Lefmann M; Reich M; Morawietz L; Roth A; Brinkmann V; Kosmiadi GA; Seiler P; Aichele P; Hahn H; Krenn V; Göbel UB; Kaufmann SH J Pathol; 2005 Apr; 205(5):633-40. PubMed ID: 15776475 [TBL] [Abstract][Full Text] [Related]
46. Evaluation of methods for isolation of DNA from slowly and rapidly growing mycobacteria. Zhang ZQ; Ishaque M Int J Lepr Other Mycobact Dis; 1997 Dec; 65(4):469-76. PubMed ID: 9465157 [TBL] [Abstract][Full Text] [Related]
47. [Identification of cultures of Mycobacteria cultivated using sodium salicylate medium]. Lazovskaia AL; Pinchuk LM; Finkel'shteĭn LS; Fokina EI Probl Tuberk; 1994; (5):45-6. PubMed ID: 7870728 [TBL] [Abstract][Full Text] [Related]
48. Isolation and purification of Mycobacterium tuberculosis from H37Rv infected guinea pig lungs. Shi L; Ryan GJ; Bhamidi S; Troudt J; Amin A; Izzo A; Lenaerts AJ; McNeil MR; Belisle JT; Crick DC; Chatterjee D Tuberculosis (Edinb); 2014 Sep; 94(5):525-30. PubMed ID: 25037320 [TBL] [Abstract][Full Text] [Related]
49. An effective method of RNA extraction from bacteria refractory to disruption, including mycobacteria. Mangan JA; Sole KM; Mitchison DA; Butcher PD Nucleic Acids Res; 1997 Feb; 25(3):675-6. PubMed ID: 9016612 [TBL] [Abstract][Full Text] [Related]
50. New method for RNA isolation from actinomycetes: application to the transcriptional analysis of the alcohol oxidoreductase gene thcE in Rhodococcus and Mycobacterium. Nagy I; Schoofs G; De Schrijver A; Vanderleyden J; De Mot R Lett Appl Microbiol; 1997 Jul; 25(1):75-9. PubMed ID: 9248086 [TBL] [Abstract][Full Text] [Related]
51. Isolation of mycobacterial RNA. Rustad TR; Roberts DM; Liao RP; Sherman DR Methods Mol Biol; 2009; 465():13-21. PubMed ID: 20560069 [TBL] [Abstract][Full Text] [Related]
52. RNAsnap™: a rapid, quantitative and inexpensive, method for isolating total RNA from bacteria. Stead MB; Agrawal A; Bowden KE; Nasir R; Mohanty BK; Meagher RB; Kushner SR Nucleic Acids Res; 2012 Nov; 40(20):e156. PubMed ID: 22821568 [TBL] [Abstract][Full Text] [Related]
53. A simple methodology for RNA isolation from bacteria by integration of formamide extraction and chitosan-modified silica purification. Zhao X; Li Y; Duan Y; Amin A; Xie Y; Shi C; Ma C Anal Bioanal Chem; 2021 Nov; 413(26):6469-6477. PubMed ID: 34505946 [TBL] [Abstract][Full Text] [Related]
55. Effective RNA isolation method for gram-positive and acid-fast bacteria: metamorphosed from conventional RNA isolation techniques. Bera JH; Raj A LS; Kumar H; Pandey N; Patel DN Arch Microbiol; 2024 Aug; 206(9):369. PubMed ID: 39110213 [TBL] [Abstract][Full Text] [Related]
56. A Stable Genetic Transformation System and Implications of the Type IV Restriction System in the Nitrogen-Fixing Plant Endosymbiont Gifford I; Vance S; Nguyen G; Berry AM Front Microbiol; 2019; 10():2230. PubMed ID: 31608043 [TBL] [Abstract][Full Text] [Related]
57. Histone methyltransferase SUV39H1 participates in host defense by methylating mycobacterial histone-like protein HupB. Yaseen I; Choudhury M; Sritharan M; Khosla S EMBO J; 2018 Jan; 37(2):183-200. PubMed ID: 29170282 [TBL] [Abstract][Full Text] [Related]
58. Integration of Metabolomics and Transcriptomics Reveals a Complex Diet of Zimmermann M; Kogadeeva M; Gengenbacher M; McEwen G; Mollenkopf HJ; Zamboni N; Kaufmann SHE; Sauer U mSystems; 2017; 2(4):. PubMed ID: 28845460 [TBL] [Abstract][Full Text] [Related]
59. Human and Mouse Hematopoietic Stem Cells Are a Depot for Dormant Mycobacterium tuberculosis. Tornack J; Reece ST; Bauer WM; Vogelzang A; Bandermann S; Zedler U; Stingl G; Kaufmann SH; Melchers F PLoS One; 2017; 12(1):e0169119. PubMed ID: 28046053 [TBL] [Abstract][Full Text] [Related]
60. Comprehensive insights into transcriptional adaptation of intracellular mycobacteria by microbe-enriched dual RNA sequencing. Rienksma RA; Suarez-Diez M; Mollenkopf HJ; Dolganov GM; Dorhoi A; Schoolnik GK; Martins Dos Santos VA; Kaufmann SH; Schaap PJ; Gengenbacher M BMC Genomics; 2015 Feb; 16(1):34. PubMed ID: 25649146 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]