BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 10803540)

  • 1. Potential use of flow cytometry in toxicity studies with microalgae.
    Franqueira D; Orosa M; Torres E; Herrero C; Cid A
    Sci Total Environ; 2000 Mar; 247(2-3):119-26. PubMed ID: 10803540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Applications of flow cytometry to ecotoxicity testing using microalgae.
    Stauber JL; Franklin NM; Adams MS
    Trends Biotechnol; 2002 Apr; 20(4):141-3. PubMed ID: 11906740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of flow cytometry-based algal bioassays for assessing toxicity of copper in natural waters.
    Franklin NM; Stauber JL; Lim RP
    Environ Toxicol Chem; 2001 Jan; 20(1):160-70. PubMed ID: 11351404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth response of freshwater algae to continuous flow of terbutryn.
    Badr SA; Abou-waly HF
    Bull Environ Contam Toxicol; 1997 Aug; 59(2):298-305. PubMed ID: 9211703
    [No Abstract]   [Full Text] [Related]  

  • 5. Response of the freshwater diatom Halamphora veneta (Kützing) Levkov to copper and mercury and its potential for bioassessment of heavy metal toxicity in aquatic habitats.
    Mu W; Jia K; Liu Y; Pan X; Fan Y
    Environ Sci Pollut Res Int; 2017 Dec; 24(34):26375-26386. PubMed ID: 28944446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chlorine toxicity to Navicula pelliculosa and Achnanthes spp. in a flow-through system: The use of immobilised microalgae and variable chlorophyll fluorescence.
    Vannoni M; Creach V; Barry J; Sheahan D
    Aquat Toxicol; 2018 Sep; 202():80-89. PubMed ID: 30007157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring of a flame retardant (tetrabromobisphenol A) toxicity on different microalgae assessed by flow cytometry.
    Debenest T; Gagné F; Petit AN; Kohli M; Eullafroy P; Blaise C
    J Environ Monit; 2010 Oct; 12(10):1918-23. PubMed ID: 20852773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of short-term copper toxicity in a co-culture of Synechococcus sp., Chaetoceros gracilis and Pleurochrisys cf. roscoffensis exposed to changes in temperature and salinity levels.
    Kholssi R; Úbeda-Manzanaro M; Blasco J; Moreno-Garrido I
    Chemosphere; 2024 Mar; 352():141282. PubMed ID: 38307328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of copper on growth and enzyme activities of marine diatom, Odontella mobiliensis.
    Manimaran K; Karthikeyan P; Ashokkumar S; Ashok Prabu V; Sampathkumar P
    Bull Environ Contam Toxicol; 2012 Jan; 88(1):30-7. PubMed ID: 22016104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of copper exposure on Pseudo-nitzschia spp. physiology and domoic acid production.
    Lelong A; Jolley DF; Soudant P; Hégaret H
    Aquat Toxicol; 2012 Aug; 118-119():37-47. PubMed ID: 22516673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Are the primary characteristics of polystyrene nanoplastics responsible for toxicity and ad/absorption in the marine diatom Phaeodactylum tricornutum?
    Sendra M; Staffieri E; Yeste MP; Moreno-Garrido I; Gatica JM; Corsi I; Blasco J
    Environ Pollut; 2019 Jun; 249():610-619. PubMed ID: 30933758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in copper toxicity towards diatom communities with experimental warming.
    Morin S; Lambert AS; Rodriguez EP; Dabrin A; Coquery M; Pesce S
    J Hazard Mater; 2017 Jul; 334():223-232. PubMed ID: 28415000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a toxicity identification evaluation protocol using chlorophyll-a fluorescence in a marine microalga.
    Strom D; Ralph PJ; Stauber JL
    Arch Environ Contam Toxicol; 2009 Jan; 56(1):30-8. PubMed ID: 18449466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of cell response in Chlamydomonas moewusii cultures exposed to the herbicide paraquat: Induction of chlorosis.
    Prado R; Rioboo C; Herrero C; Cid A
    Aquat Toxicol; 2011 Mar; 102(1-2):10-7. PubMed ID: 21371607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toxicological effects of phenol on four marine microalgae.
    Duan W; Meng F; Lin Y; Wang G
    Environ Toxicol Pharmacol; 2017 Jun; 52():170-176. PubMed ID: 28432996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction between three marine microalgae and two phthalate acid esters.
    Chi J; Li Y; Gao J
    Ecotoxicol Environ Saf; 2019 Apr; 170():407-411. PubMed ID: 30550971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toxic effects of microplastic on marine microalgae Skeletonema costatum: Interactions between microplastic and algae.
    Zhang C; Chen X; Wang J; Tan L
    Environ Pollut; 2017 Jan; 220(Pt B):1282-1288. PubMed ID: 27876228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chronic toxicity of an environmentally relevant and equitoxic ratio of five metals to two Antarctic marine microalgae shows complex mixture interactivity.
    Koppel DJ; Adams MS; King CK; Jolley DF
    Environ Pollut; 2018 Nov; 242(Pt B):1319-1330. PubMed ID: 30121486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toxicity of Co nanoparticles on three species of marine microalgae.
    Chen X; Zhang C; Tan L; Wang J
    Environ Pollut; 2018 May; 236():454-461. PubMed ID: 29414370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluating features of periphytic diatom communities as biomonitoring tools in fresh, brackish and marine waters.
    Pandey LK; Sharma YC; Park J; Choi S; Lee H; Lyu J; Han T
    Aquat Toxicol; 2018 Jan; 194():67-77. PubMed ID: 29156433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.