These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 10803951)

  • 1. Biosynthesis of violacein: intact incorporation of the tryptophan molecule on the oxindole side, with intramolecular rearrangement of the indole ring on the 5-hydroxyindole side.
    Momen AZ; Hoshino T
    Biosci Biotechnol Biochem; 2000 Mar; 64(3):539-49. PubMed ID: 10803951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Violacein and related tryptophan metabolites produced by Chromobacterium violaceum: biosynthetic mechanism and pathway for construction of violacein core.
    Hoshino T
    Appl Microbiol Biotechnol; 2011 Sep; 91(6):1463-75. PubMed ID: 21779844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro biosynthesis of violacein from L-tryptophan by the enzymes VioA-E from Chromobacterium violaceum.
    Balibar CJ; Walsh CT
    Biochemistry; 2006 Dec; 45(51):15444-57. PubMed ID: 17176066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reevaluation of the violacein biosynthetic pathway and its relationship to indolocarbazole biosynthesis.
    Sánchez C; Braña AF; Méndez C; Salas JA
    Chembiochem; 2006 Aug; 7(8):1231-40. PubMed ID: 16874749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of tryptophan as a biosynthetic precursor of indole-diterpenoid fungal metabolites: continuing a debate.
    Mantle PG
    Phytochemistry; 2009 Jan; 70(1):7-10. PubMed ID: 19136126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequence analysis and functional characterization of the violacein biosynthetic pathway from Chromobacterium violaceum.
    August PR; Grossman TH; Minor C; Draper MP; MacNeil IA; Pemberton JM; Call KM; Holt D; Osburne MS
    J Mol Microbiol Biotechnol; 2000 Oct; 2(4):513-9. PubMed ID: 11075927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proof for the biosynthetic conversion of L-[indole-15N]tryptophan to [10-15N]anthramycin using (13C, 15N) labelling in conjunction with 13C-NMR and mass spectral analysis.
    Ostrander JM; Hurley LH; McInnes AG; Smith DG; Walter JA; Wright JL
    J Antibiot (Tokyo); 1980 Oct; 33(10):1167-71. PubMed ID: 7451368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosynthesis of violacein: a genuine intermediate, protoviolaceinic acid, produced by VioABDE, and insight into VioC function.
    Shinoda K; Hasegawa T; Sato H; Shinozaki M; Kuramoto H; Takamiya Y; Sato T; Nikaidou N; Watanabe T; Hoshino T
    Chem Commun (Camb); 2007 Oct; (40):4140-2. PubMed ID: 17925955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosynthesis of indocarbazostatin B, incorporation of D-[U-13C] glucose and L-[2-13C] tryptophan.
    Feng Y; Mitsuhashi S; Kishimoto T; Ubukata M
    J Antibiot (Tokyo); 2005 Dec; 58(12):759-65. PubMed ID: 16506693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. L-Tryptophan catabolism by Rubrivivax benzoatilyticus JA2 occurs through indole 3-pyruvic acid pathway.
    Kumavath RN; Ramana ChV; Sasikala Ch
    Biodegradation; 2010 Sep; 21(5):825-32. PubMed ID: 20217460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosynthesis of sespendole.
    Uchida R; Tomoda H; Omura S
    J Antibiot (Tokyo); 2006 May; 59(5):298-302. PubMed ID: 16883780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Indolic constituents and indole-3-acetic acid biosynthesis in the wild-type and a tryptophan auxotroph mutant of Arabidopsis thaliana.
    Müller A; Weiler EW
    Planta; 2000 Nov; 211(6):855-63. PubMed ID: 11144271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined experimental/theoretical refinement of indole ring geometry using deuterium magnetic resonance and ab initio calculations.
    Koeppe RE; Sun H; van der Wel PC; Scherer EM; Pulay P; Greathouse DV
    J Am Chem Soc; 2003 Oct; 125(40):12268-76. PubMed ID: 14519012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intramolecular dearomative oxidative coupling of indoles: a unified strategy for the total synthesis of indoline alkaloids.
    Zi W; Zuo Z; Ma D
    Acc Chem Res; 2015 Mar; 48(3):702-11. PubMed ID: 25667972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Processing 2-Methyl-l-Tryptophan through Tandem Transamination and Selective Oxygenation Initiates Indole Ring Expansion in the Biosynthesis of Thiostrepton.
    Lin Z; Ji J; Zhou S; Zhang F; Wu J; Guo Y; Liu W
    J Am Chem Soc; 2017 Sep; 139(35):12105-12108. PubMed ID: 28820583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of
    Maleckis A; Herath ID; Otting G
    Org Biomol Chem; 2021 Jun; 19(23):5133-5147. PubMed ID: 34032255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New type of linkage between a carbohydrate and a protein: C-glycosylation of a specific tryptophan residue in human RNase Us.
    Hofsteenge J; Müller DR; de Beer T; Löffler A; Richter WJ; Vliegenthart JF
    Biochemistry; 1994 Nov; 33(46):13524-30. PubMed ID: 7947762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of camalexin and structurally related indolic compounds.
    Rauhut T; Glawischnig E
    Phytochemistry; 2009; 70(15-16):1638-44. PubMed ID: 19523656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of VioE, a key player in the construction of the molecular skeleton of violacein.
    Hirano S; Asamizu S; Onaka H; Shiro Y; Nagano S
    J Biol Chem; 2008 Mar; 283(10):6459-66. PubMed ID: 18171677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biological matching of chemical reactivity: pairing indole nucleophilicity with electrophilic isoprenoids.
    Walsh CT
    ACS Chem Biol; 2014 Dec; 9(12):2718-28. PubMed ID: 25303280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.