BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 10803962)

  • 1. Expression and mutational analysis of amino acid residues involved in catalytic activity in a ribonuclease MC1 from the seeds of bitter gourd.
    Numata T; Kashiba T; Hino M; Funatsu G; Ishiguro M; Yamasaki N; Kimura M
    Biosci Biotechnol Biochem; 2000 Mar; 64(3):603-5. PubMed ID: 10803962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of a ribonuclease from the seeds of bitter gourd (Momordica charantia) at 1.75 A resolution.
    Nakagawa A; Tanaka I; Sakai R; Nakashima T; Funatsu G; Kimura M
    Biochim Biophys Acta; 1999 Aug; 1433(1-2):253-60. PubMed ID: 10446375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amino acid residues in ribonuclease MC1 from bitter gourd seeds which are essential for uridine specificity.
    Numata T; Suzuki A; Yao M; Tanaka I; Kimura M
    Biochemistry; 2001 Jan; 40(2):524-30. PubMed ID: 11148047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structures of the ribonuclease MC1 from bitter gourd seeds, complexed with 2'-UMP or 3'-UMP, reveal structural basis for uridine specificity.
    Suzuki A; Yao M; Tanaka I; Numata T; Kikukawa S; Yamasaki N; Kimura M
    Biochem Biophys Res Commun; 2000 Aug; 275(2):572-6. PubMed ID: 10964705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structures of the ribonuclease MC1 mutants N71T and N71S in complex with 5'-GMP: structural basis for alterations in substrate specificity.
    Numata T; Suzuki A; Kakuta Y; Kimura K; Yao M; Tanaka I; Yoshida Y; Ueda T; Kimura M
    Biochemistry; 2003 May; 42(18):5270-8. PubMed ID: 12731868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of Gln9 and Phe80 to substrate binding in ribonuclease MC1 from bitter gourd seeds.
    Numata T; Kimura M
    J Biochem; 2001 Nov; 130(5):621-6. PubMed ID: 11686924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The complete amino acid sequence of ribonuclease from the seeds of bitter gourd (Momordica charantia).
    Ide H; Kimura M; Arai M; Funatsu G
    FEBS Lett; 1991 Jun; 284(2):161-4. PubMed ID: 2060635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Residues 36-42 of liver RNase PL3 contribute to its uridine-preferring substrate specificity. Cloning of the cDNA and site-directed mutagenesis studies.
    Vicentini AM; Hemmings BA; Hofsteenge J
    Protein Sci; 1994 Mar; 3(3):459-66. PubMed ID: 8019417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amino acids conserved at the C-terminal half of the ribonuclease T2 family contribute to protein stability of the enzymes.
    Kimura K; Numata T; Kakuta Y; Kimura M
    Biosci Biotechnol Biochem; 2004 Aug; 68(8):1748-57. PubMed ID: 15322360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymatic properties of phenylalanine101 mutant enzyme of ribonuclease rh from Rhizopus niveus.
    Ohgi K; Kudo S; Takeuchi M; Iwama M; Irie M
    Biosci Biotechnol Biochem; 2000 Oct; 64(10):2068-74. PubMed ID: 11129577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence that three histidine residues of a base non-specific and adenylic acid preferential ribonuclease from Rhizopus niveus are involved in the catalytic function.
    Ohgi K; Horiuchi H; Watanabe H; Iwama M; Takagi M; Irie M
    J Biochem; 1992 Jul; 112(1):132-8. PubMed ID: 1429502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of Lys108 in the enzymatic activity of RNase Rh from Rhizopus niveus.
    Ohgi K; Iwama M; Tada K; Takizawa R; Irie M
    J Biochem; 1995 Jan; 117(1):27-33. PubMed ID: 7775395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymatic properties of glutamine 32 mutants of RNase Rh from Rhizopus niveus, a trial to alter the most preferential inter-nucleotidic linkages of RNase Rh.
    Ohgi K; Iwama M; Inokuchi N; Irie M
    Biosci Biotechnol Biochem; 2003 Mar; 67(3):570-6. PubMed ID: 12723605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymatic properties of mutant forms of RNase Rh from Rhizopus niveus as to Asp51.
    Ohgi K; Takeuchi M; Iwama M; Irie M
    J Biochem; 1996 Mar; 119(3):548-52. PubMed ID: 8830052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of RNase HII substrate recognition using RNase HII-argonaute chimaeric enzymes from Pyrococcus furiosus.
    Kitamura S; Fujishima K; Sato A; Tsuchiya D; Tomita M; Kanai A
    Biochem J; 2010 Feb; 426(3):337-44. PubMed ID: 20047562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Origin of the catalytic activity of bovine seminal ribonuclease against double-stranded RNA.
    Opitz JG; Ciglic MI; Haugg M; Trautwein-Fritz K; Raillard SA; Jermann TM; Benner SA
    Biochemistry; 1998 Mar; 37(12):4023-33. PubMed ID: 9521723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of Asp51 and Glu105 in the enzymatic activity of a ribonuclease from Rhizopus niveus.
    Ohgi K; Horiuchi H; Watanabe H; Iwama M; Takagi M; Irie M
    J Biochem; 1993 Feb; 113(2):219-24. PubMed ID: 8096846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutational analysis of the nuclease domain of Escherichia coli ribonuclease III. Identification of conserved acidic residues that are important for catalytic function in vitro.
    Sun W; Li G; Nicholson AW
    Biochemistry; 2004 Oct; 43(41):13054-62. PubMed ID: 15476399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Guanine binding site of the Nicotiana glutinosa ribonuclease NW revealed by X-ray crystallography.
    Kawano S; Kakuta Y; Kimura M
    Biochemistry; 2002 Dec; 41(51):15195-202. PubMed ID: 12484757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein cofactor-dependent acquisition of novel catalytic activity by the RNase P ribonucleoprotein of E. coli.
    Cole KB; Dorit RL
    J Mol Biol; 2001 Apr; 307(5):1181-212. PubMed ID: 11292334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.