These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 10804066)

  • 1. The effect of intracortical competition on the formation of topographic maps in models of Hebbian learning.
    Piepenbrock C; Obermayer K
    Biol Cybern; 2000 Apr; 82(4):345-53. PubMed ID: 10804066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homeostatic synaptic scaling in self-organizing maps.
    Sullivan TJ; de Sa VR
    Neural Netw; 2006; 19(6-7):734-43. PubMed ID: 16782305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Topographic receptive fields and patterned lateral interaction in a self-organizing model of the primary visual cortex.
    Sirosh J; Miikkulainen R
    Neural Comput; 1997 Apr; 9(3):577-94. PubMed ID: 9097475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An incremental Hebbian learning model of the primary visual cortex with lateral plasticity and real input patterns.
    Burger T; Lang EW
    Z Naturforsch C J Biosci; 1999; 54(1-2):128-40. PubMed ID: 10097413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learning cortical topography from spatiotemporal stimuli.
    Wiemer J; Spengler F; Joublin F; Stagge P; Wacquant S
    Biol Cybern; 2000 Feb; 82(2):173-87. PubMed ID: 10664104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of a correlation-based model for the development of orientation-selective receptive fields in the visual cortex.
    Wimbauer S; Gerstner W; van Hemmen JL
    Network; 1998 Nov; 9(4):449-66. PubMed ID: 10221574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cortical Maps.
    Bednar JA; Wilson SP
    Neuroscientist; 2016 Dec; 22(6):604-617. PubMed ID: 26290447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive FIR neural model for centroid learning in self-organizing maps.
    Tucci M; Raugi M
    IEEE Trans Neural Netw; 2010 Jun; 21(6):948-60. PubMed ID: 20421182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of spatiotemporal receptive fields of simple cells: II. Simulation and analysis.
    Wimbauer S; Wenisch OG; van Hemmen JL; Miller KD
    Biol Cybern; 1997 Dec; 77(6):463-77. PubMed ID: 9433757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A model for learning topographically organized parts-based representations of objects in visual cortex: topographic nonnegative matrix factorization.
    Hosoda K; Watanabe M; Wersing H; Körner E; Tsujino H; Tamura H; Fujita I
    Neural Comput; 2009 Sep; 21(9):2605-33. PubMed ID: 19548799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-organizing neural projections.
    Kohonen T
    Neural Netw; 2006; 19(6-7):723-33. PubMed ID: 16774731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lateral spike conduction velocity in the visual cortex affects spatial range of synchronization and receptive field size without visual experience: a learning model with spiking neurons.
    Saam M; Eckhorn R
    Biol Cybern; 2000 Jul; 83(1):L1-9. PubMed ID: 10933233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self organized mapping of data clusters to neuron groups.
    Müller D
    Neural Netw; 2009 May; 22(4):415-24. PubMed ID: 19103474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Can Hebbian volume learning explain discontinuities in cortical maps?
    Mitchison GJ; Swindale NV
    Neural Comput; 1999 Oct; 11(7):1519-26. PubMed ID: 10490935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporally asymmetric learning supports sequence processing in multi-winner self-organizing maps.
    Schulz R; Reggia JA
    Neural Comput; 2004 Mar; 16(3):535-61. PubMed ID: 15006091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orientation tuning properties of simple cells in area V1 derived from an approximate analysis of nonlinear neural field models.
    Wennekers T
    Neural Comput; 2001 Aug; 13(8):1721-47. PubMed ID: 11506668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid processing and unsupervised learning in a model of the cortical macrocolumn.
    Lücke J; von der Malsburg C
    Neural Comput; 2004 Mar; 16(3):501-33. PubMed ID: 15006090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasticity-induced symmetry relationships between adjacent self-organizing topographic maps.
    Sylvester J; Reggia J
    Neural Comput; 2009 Dec; 21(12):3429-43. PubMed ID: 19764873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics and topographic organization of recursive self-organizing maps.
    Tino P; Farkas I; van Mourik J
    Neural Comput; 2006 Oct; 18(10):2529-67. PubMed ID: 16907636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-organizing maps with dynamic learning for signal reconstruction.
    Cho J; Paiva AR; Kim SP; Sanchez JC; Príncipe JC
    Neural Netw; 2007 Mar; 20(2):274-84. PubMed ID: 17234384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.