These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 10804165)

  • 1. Horizontal flight of a swallow (Hirundo rustica) observed in a wind tunnel, with a new method for directly measuring mechanical power.
    Pennycuick CJ; Hedenström A; Rosén M
    J Exp Biol; 2000 Jun; 203(Pt 11):1755-65. PubMed ID: 10804165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flight kinematics of the barn swallow (Hirundo rustica) over a wide range of speeds in a wind tunnel.
    Park KJ; Rosén M; Hedenström A
    J Exp Biol; 2001 Aug; 204(Pt 15):2741-50. PubMed ID: 11533124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vortex wakes generated by robins Erithacus rubecula during free flight in a wind tunnel.
    Hedenström A; Rosén M; Spedding GR
    J R Soc Interface; 2006 Apr; 3(7):263-76. PubMed ID: 16849236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gliding flight in a jackdaw: a wind tunnel study.
    Rosén M; Hedenström A
    J Exp Biol; 2001 Mar; 204(Pt 6):1153-66. PubMed ID: 11222131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical power curve measured in the wake of pied flycatchers indicates modulation of parasite power across flight speeds.
    Johansson LC; Maeda M; Henningsson P; Hedenström A
    J R Soc Interface; 2018 Jan; 15(138):. PubMed ID: 29386402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A family of vortex wakes generated by a thrush nightingale in free flight in a wind tunnel over its entire natural range of flight speeds.
    Spedding GR; Rosén M; Hedenström A
    J Exp Biol; 2003 Jul; 206(Pt 14):2313-44. PubMed ID: 12796450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Field estimates of body drag coefficient on the basis of dives in passerine birds.
    Hedenström A; Liechti F
    J Exp Biol; 2001 Mar; 204(Pt 6):1167-75. PubMed ID: 11222132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinematic control of male Allen's hummingbird wing trill over a range of flight speeds.
    Clark CJ; Mistick EA
    J Exp Biol; 2018 Jul; 221(Pt 14):. PubMed ID: 29776995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexibility in flight behaviour of barn swallows (Hirundo rustica) and house martins (Delichon urbica) tested in a wind tunnel.
    Bruderer L; Liechti F; Bilo D
    J Exp Biol; 2001 Apr; 204(Pt 8):1473-84. PubMed ID: 11273808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wake analysis of aerodynamic components for the glide envelope of a jackdaw (Corvus monedula).
    KleinHeerenbrink M; Warfvinge K; Hedenström A
    J Exp Biol; 2016 May; 219(Pt 10):1572-81. PubMed ID: 26994178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vortex wake, downwash distribution, aerodynamic performance and wingbeat kinematics in slow-flying pied flycatchers.
    Muijres FT; Bowlin MS; Johansson LC; Hedenström A
    J R Soc Interface; 2012 Feb; 9(67):292-303. PubMed ID: 21676971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimates of circulation and gait change based on a three-dimensional kinematic analysis of flight in cockatiels (Nymphicus hollandicus) and ringed turtle-doves (Streptopelia risoria).
    Hedrick TL; Tobalske BW; Biewener AA
    J Exp Biol; 2002 May; 205(Pt 10):1389-409. PubMed ID: 11976351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gliding flight: drag and torque of a hawk and a falcon with straight and turned heads, and a lower value for the parasite drag coefficient.
    Tucker VA
    J Exp Biol; 2000 Dec; 203(Pt 24):3733-44. PubMed ID: 11076737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic power, mechanical power and efficiency during wind tunnel flight by the European starling Sturnus vulgaris.
    Ward S; Möller U; Rayner JM; Jackson DM; Bilo D; Nachtigall W; Speakman JR
    J Exp Biol; 2001 Oct; 204(Pt 19):3311-22. PubMed ID: 11606605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aerodynamic force generation and power requirements in forward flight in a fruit fly with modeled wing motion.
    Sun M; Wu JH
    J Exp Biol; 2003 Sep; 206(Pt 17):3065-83. PubMed ID: 12878674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficiency of lift production in flapping and gliding flight of swifts.
    Henningsson P; Hedenström A; Bomphrey RJ
    PLoS One; 2014; 9(2):e90170. PubMed ID: 24587260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hot wings: thermal impacts of wing coloration on surface temperature during bird flight.
    Rogalla S; D'Alba L; Verdoodt A; Shawkey MD
    J R Soc Interface; 2019 Jul; 16(156):20190032. PubMed ID: 31337303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wingbeat frequency of barn swallows and house martins: a comparison between free flight and wind tunnel experiments.
    Liechti F; Bruderer L
    J Exp Biol; 2002 Aug; 205(Pt 16):2461-7. PubMed ID: 12124369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aerodynamic consequences of wing morphing during emulated take-off and gliding in birds.
    Klaassen van Oorschot B; Mistick EA; Tobalske BW
    J Exp Biol; 2016 Oct; 219(Pt 19):3146-3154. PubMed ID: 27473437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wake structure and wingbeat kinematics of a house-martin Delichon urbica.
    Rosén M; Spedding GR; Hedenström A
    J R Soc Interface; 2007 Aug; 4(15):659-68. PubMed ID: 17264054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.