BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 10804208)

  • 1. From plaque to pretzel: fold formation and acetylcholine receptor loss at the developing neuromuscular junction.
    Marques MJ; Conchello JA; Lichtman JW
    J Neurosci; 2000 May; 20(10):3663-75. PubMed ID: 10804208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo observations of pre- and postsynaptic changes during the transition from multiple to single innervation at developing neuromuscular junctions.
    Balice-Gordon RJ; Lichtman JW
    J Neurosci; 1993 Feb; 13(2):834-55. PubMed ID: 8426240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Presynaptic localization of the small conductance calcium-activated potassium channel SK3 at the neuromuscular junction.
    Roncarati R; Di Chio M; Sava A; Terstappen GC; Fumagalli G
    Neuroscience; 2001; 104(1):253-62. PubMed ID: 11311547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The spatiotemporal characterization of endplate reoccupation, with special reference to the superposition patterns of the presynaptic elements and the postsynaptic receptor regions during muscle reinnervation.
    Wang S; Kawabuchi M; Zhou CJ; Hirata K; Tan H; Kuraoka A
    J Peripher Nerv Syst; 2004 Sep; 9(3):144-57. PubMed ID: 15363062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acetylcholine receptors and nerve terminal distribution at the neuromuscular junction of non-obese diabetic mice.
    Marques MJ; Santo Neto H
    Anat Rec; 2002 Jun; 267(2):112-9. PubMed ID: 11997879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo visualization of the growth of pre- and postsynaptic elements of neuromuscular junctions in the mouse.
    Balice-Gordon RJ; Lichtman JW
    J Neurosci; 1990 Mar; 10(3):894-908. PubMed ID: 2156964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural agrin increases postsynaptic ACh receptor packing by elevating rapsyn protein at the mouse neuromuscular synapse.
    Brockhausen J; Cole RN; Gervásio OL; Ngo ST; Noakes PG; Phillips WD
    Dev Neurobiol; 2008 Aug; 68(9):1153-69. PubMed ID: 18506821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Super-Resolution Microscopy Reveals a Nanoscale Organization of Acetylcholine Receptors for Trans-Synaptic Alignment at Neuromuscular Synapses.
    York AL; Zheng JQ
    eNeuro; 2017; 4(4):. PubMed ID: 28798955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fine structural distribution of acetylcholine receptors at developing mouse neuromuscular junctions.
    Matthews-Bellinger JA; Salpeter MM
    J Neurosci; 1983 Mar; 3(3):644-57. PubMed ID: 6827314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo imaging shows loss of synaptic sites from neuromuscular junctions in a model of myasthenia gravis.
    Rich MM; Colman H; Lichtman JW
    Neurology; 1994 Nov; 44(11):2138-45. PubMed ID: 7969973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pre- and postsynaptic maturation of the neuromuscular junction during neonatal synapse elimination depends on protein kinase C.
    Lanuza MA; Garcia N; Santafé M; González CM; Alonso I; Nelson PG; Tomàs J
    J Neurosci Res; 2002 Mar; 67(5):607-17. PubMed ID: 11891773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AChRs Are Essential for the Targeting of Rapsyn to the Postsynaptic Membrane of NMJs in Living Mice.
    Chen PJ; Martinez-Pena Y Valenzuela I; Aittaleb M; Akaaboune M
    J Neurosci; 2016 May; 36(21):5680-5. PubMed ID: 27225759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of perisynaptic Schwann cells in development of neuromuscular junctions in the frog (Xenopus laevis).
    Herrera AA; Qiang H; Ko CP
    J Neurobiol; 2000 Dec; 45(4):237-54. PubMed ID: 11077428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glia cell line-derived neurotrophic factor regulates the distribution of acetylcholine receptors in mouse primary skeletal muscle cells.
    Yang LX; Nelson PG
    Neuroscience; 2004; 128(3):497-509. PubMed ID: 15381279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The distribution of acetylcholine receptors in the normal and denervated neuromuscular junction of the frog.
    Krause M; Wernig A
    J Neurocytol; 1985 Oct; 14(5):765-80. PubMed ID: 3879268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of rat soleus endplate membrane following denervation at birth.
    Moss BL; Schuetze SM
    J Neurobiol; 1987 Jan; 18(1):101-18. PubMed ID: 3572385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tyrosine phosphatases such as SHP-2 act in a balance with Src-family kinases in stabilization of postsynaptic clusters of acetylcholine receptors.
    Camilleri AA; Willmann R; Sadasivam G; Lin S; Rüegg MA; Gesemann M; Fuhrer C
    BMC Neurosci; 2007 Jul; 8():46. PubMed ID: 17605785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autoradiographic localization of voltage-dependent sodium channels on the mouse neuromuscular junction using 125I-alpha scorpion toxin. II. Sodium distribution on postsynaptic membranes.
    Boudier JL; Le Treut T; Jover E
    J Neurosci; 1992 Feb; 12(2):454-66. PubMed ID: 1311031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nerve terminals form but fail to mature when postsynaptic differentiation is blocked: in vivo analysis using mammalian nerve-muscle chimeras.
    Nguyen QT; Son YJ; Sanes JR; Lichtman JW
    J Neurosci; 2000 Aug; 20(16):6077-86. PubMed ID: 10934257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Voltage-gated sodium channels and ankyrinG occupy a different postsynaptic domain from acetylcholine receptors from an early stage of neuromuscular junction maturation in rats.
    Bailey SJ; Stocksley MA; Buckel A; Young C; Slater CR
    J Neurosci; 2003 Mar; 23(6):2102-11. PubMed ID: 12657669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.