These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 10804582)

  • 1. Catalytic synthesis of aldehydes and ketones under mild conditions using TEMPO/Oxone.
    Bolm C; Magnus AS; Hildebrand JP
    Org Lett; 2000 Apr; 2(8):1173-5. PubMed ID: 10804582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TEMPO/HCl/NaNO2 catalyst: a transition-metal-free approach to efficient aerobic oxidation of alcohols to aldehydes and ketones under mild conditions.
    Wang X; Liu R; Jin Y; Liang X
    Chemistry; 2008; 14(9):2679-85. PubMed ID: 18293352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iodine as a chemoselective reoxidant of TEMPO: application to the oxidation of alcohols to aldehydes and ketones.
    Miller RA; Hoerrner RS
    Org Lett; 2003 Feb; 5(3):285-7. PubMed ID: 12556173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient and selective aerobic oxidation of alcohols into aldehydes and ketones using ruthenium/TEMPO as the catalytic system.
    Dijksman A; Marino-González A; Mairata I Payeras A; Arends IW; Sheldon RA
    J Am Chem Soc; 2001 Jul; 123(28):6826-33. PubMed ID: 11448187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 2-Iodoxybenzenesulfonic acid as an extremely active catalyst for the selective oxidation of alcohols to aldehydes, ketones, carboxylic acids, and enones with oxone.
    Uyanik M; Akakura M; Ishihara K
    J Am Chem Soc; 2009 Jan; 131(1):251-62. PubMed ID: 19053813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective oxidation of alcohols with alkali metal bromides as bromide catalysts: experimental study of the reaction mechanism.
    Moriyama K; Takemura M; Togo H
    J Org Chem; 2014 Jul; 79(13):6094-104. PubMed ID: 24901944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective synthesis of secondary amines by Pt nanowire catalyzed reductive amination of aldehydes and ketones with ammonia.
    Qi F; Hu L; Lu S; Cao X; Gu H
    Chem Commun (Camb); 2012 Oct; 48(77):9631-3. PubMed ID: 22914578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile oxidation of aldehydes to acids and esters with Oxone.
    Travis BR; Sivakumar M; Hollist GO; Borhan B
    Org Lett; 2003 Apr; 5(7):1031-4. PubMed ID: 12659566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radical cyclization of alkynyl aryl ketones for the synthesis of 3-seleno-substituted thiochromones and chromones.
    Bartz RH; Silva KB; Peglow TJ; Barcellos AM; Jacob RG; Lenardão EJ; Perin G
    Org Biomol Chem; 2022 Nov; 20(45):8952-8961. PubMed ID: 36326093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel polyaniline-supported molybdenum-catalyzed aerobic oxidation of alcohols to aldehydes and ketones.
    Velusamy S; Ahamed M; Punniyamurthy T
    Org Lett; 2004 Dec; 6(26):4821-4. PubMed ID: 15606075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal-Free Oxidation of Primary Amines to Nitriles through Coupled Catalytic Cycles.
    Lambert KM; Bobbitt JM; Eldirany SA; Kissane LE; Sheridan RK; Stempel ZD; Sternberg FH; Bailey WF
    Chemistry; 2016 Apr; 22(15):5156-9. PubMed ID: 26868873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic enantioselective aldol reaction to ketones.
    Oisaki K; Zhao D; Kanai M; Shibasaki M
    J Am Chem Soc; 2006 Jun; 128(22):7164-5. PubMed ID: 16734461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Benzoyl radicals from (hetero)aromatic aldehydes. Decatungstate photocatalyzed synthesis of substituted aromatic ketones.
    Ravelli D; Zema M; Mella M; Fagnoni M; Albini A
    Org Biomol Chem; 2010 Sep; 8(18):4158-64. PubMed ID: 20661511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TEMPO-catalyzed aerobic oxidation of alcohols to aldehydes and ketones in ionic liquid [bmim][PF6].
    Ansari IA; Gree R
    Org Lett; 2002 May; 4(9):1507-9. PubMed ID: 11975615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly efficient hydrophosphonylation of aldehydes and unactivated ketones catalyzed by methylene-linked pyrrolyl rare earth metal amido complexes.
    Zhou S; Wu Z; Rong J; Wang S; Yang G; Zhu X; Zhang L
    Chemistry; 2012 Feb; 18(9):2653-9. PubMed ID: 22259029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cesium carbonate catalyzed chemoselective hydrosilylation of aldehydes and ketones under solvent-free conditions.
    Zhao M; Xie W; Cui C
    Chemistry; 2014 Jul; 20(30):9259-62. PubMed ID: 24989934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct conversion of alcohols to α-chloro aldehydes and α-chloro ketones.
    Jing Y; Daniliuc CG; Studer A
    Org Lett; 2014 Sep; 16(18):4932-5. PubMed ID: 25197943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The RuO4-catalyzed ketohydroxylation. Part 1. Development, scope, and limitation.
    Plietker B
    J Org Chem; 2004 Nov; 69(24):8287-96. PubMed ID: 15549799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silazanes/catalytic bases: mild, powerful and chemoselective agents for the preparation of enol silyl ethers from ketones and aldehydes.
    Tanabe Y; Misaki T; Kurihara M; Iida A; Nishii Y
    Chem Commun (Camb); 2002 Aug; (15):1628-9. PubMed ID: 12170815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organocatalytic C-H bond arylation of aldehydes to bis-heteroaryl ketones.
    Toh QY; McNally A; Vera S; Erdmann N; Gaunt MJ
    J Am Chem Soc; 2013 Mar; 135(10):3772-5. PubMed ID: 23445238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.