BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 10805064)

  • 1. Human halothane metabolism, lipid peroxidation, and cytochromes P(450)2A6 and P(450)3A4.
    Kharasch ED; Hankins DC; Fenstamaker K; Cox K
    Eur J Clin Pharmacol; 2000; 55(11-12):853-9. PubMed ID: 10805064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human reductive halothane metabolism in vitro is catalyzed by cytochrome P450 2A6 and 3A4.
    Spracklin DK; Thummel KE; Kharasch ED
    Drug Metab Dispos; 1996 Sep; 24(9):976-83. PubMed ID: 8886607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Halothane-dependent lipid peroxidation in human liver microsomes is catalyzed by cytochrome P4502A6 (CYP2A6).
    Minoda Y; Kharasch ED
    Anesthesiology; 2001 Aug; 95(2):509-14. PubMed ID: 11506127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-dose methoxsalen effects on human cytochrome P-450 2A6 activity.
    Kharasch ED; Hankins DC; Taraday JK
    Drug Metab Dispos; 2000 Jan; 28(1):28-33. PubMed ID: 10611136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of the enzyme responsible for oxidative halothane metabolism: implications for prevention of halothane hepatitis.
    Kharasch ED; Hankins D; Mautz D; Thummel KE
    Lancet; 1996 May; 347(9012):1367-71. PubMed ID: 8637342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytochrome P450 2E1 is the principal catalyst of human oxidative halothane metabolism in vitro.
    Spracklin DK; Hankins DC; Fisher JM; Thummel KE; Kharasch ED
    J Pharmacol Exp Ther; 1997 Apr; 281(1):400-11. PubMed ID: 9103523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lack of single-dose disulfiram effects on cytochrome P-450 2C9, 2C19, 2D6, and 3A4 activities: evidence for specificity toward P-450 2E1.
    Kharasch ED; Hankins DC; Jubert C; Thummel KE; Taraday JK
    Drug Metab Dispos; 1999 Jun; 27(6):717-23. PubMed ID: 10348802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human halothane reduction in vitro by cytochrome P450 2A6 and 3A4: identification of low and high KM isoforms.
    Spracklin DK; Kharasch ED
    Drug Metab Dispos; 1998 Jun; 26(6):605-7. PubMed ID: 9616199
    [No Abstract]   [Full Text] [Related]  

  • 9. Mechanism-based inactivation of human liver cytochrome P450 2A6 by 8-methoxypsoralen.
    Koenigs LL; Peter RM; Thompson SJ; Rettie AE; Trager WF
    Drug Metab Dispos; 1997 Dec; 25(12):1407-15. PubMed ID: 9394031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Concordance between trifluoroacetic acid and hepatic protein trifluoroacetylation after disulfiram inhibition of halothane metabolism in rats.
    Spracklin DK; Emery ME; Thummel KE; Kharasch ED
    Acta Anaesthesiol Scand; 2003 Jul; 47(6):765-70. PubMed ID: 12803597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of methoxsalen, tranylcypromine, and tryptamine as specific and selective CYP2A6 inhibitors in vitro.
    Zhang W; Kilicarslan T; Tyndale RF; Sellers EM
    Drug Metab Dispos; 2001 Jun; 29(6):897-902. PubMed ID: 11353760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-dose disulfiram does not inhibit CYP2A6 activity.
    Kharasch ED; Hankins DC; Baxter PJ; Thummel KE
    Clin Pharmacol Ther; 1998 Jul; 64(1):39-45. PubMed ID: 9695717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative studies of in vitro inhibition of cytochrome P450 3A4-dependent testosterone 6beta-hydroxylation by roxithromycin and its metabolites, troleandomycin, and erythromycin.
    Yamazaki H; Shimada T
    Drug Metab Dispos; 1998 Nov; 26(11):1053-7. PubMed ID: 9806945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biotransformation of parathion in human liver: participation of CYP3A4 and its inactivation during microsomal parathion oxidation.
    Butler AM; Murray M
    J Pharmacol Exp Ther; 1997 Feb; 280(2):966-73. PubMed ID: 9023313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytochromes P450 2A6, 2E1, and 3A and production of protein-aldehyde adducts in the liver of patients with alcoholic and non-alcoholic liver diseases.
    Niemelä O; Parkkila S; Juvonen RO; Viitala K; Gelboin HV; Pasanen M
    J Hepatol; 2000 Dec; 33(6):893-901. PubMed ID: 11131450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isoflurane acts as an inhibitor of oxidative dehalogenation while acting as an accelerator of reductive dehalogenation of halothane in guinea pig liver microsomes.
    Fujii K
    Toxicology; 1995 Dec; 104(1-3):123-8. PubMed ID: 8560490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for cytochrome P450 2A6 and 3A4 as major catalysts for N'-nitrosonornicotine alpha-hydroxylation by human liver microsomes.
    Patten CJ; Smith TJ; Friesen MJ; Tynes RE; Yang CS; Murphy SE
    Carcinogenesis; 1997 Aug; 18(8):1623-30. PubMed ID: 9276639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of human cytochrome P450 3A4 in reduced haloperidol oxidation.
    Kudo S; Odomi M
    Eur J Clin Pharmacol; 1998 May; 54(3):253-9. PubMed ID: 9681669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Baculovirus-mediated expression and characterization of rat CYP2A3 and human CYP2a6: role in metabolic activation of nasal toxicants.
    Liu C; Zhuo X; Gonzalez FJ; Ding X
    Mol Pharmacol; 1996 Oct; 50(4):781-8. PubMed ID: 8863822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic characterization and identification of the enzymes responsible for the hepatic biotransformation of adinazolam and N-desmethyladinazolam in man.
    Venkatakrishnan K; von Moltke LL; Duan SX; Fleishaker JC; Shader RI; Greenblatt DJ
    J Pharm Pharmacol; 1998 Mar; 50(3):265-74. PubMed ID: 9600717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.