These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 10805244)

  • 41. Formulation and tillage effects on atrazine and alachlor in shallow ground water in upland corn production.
    Smith S; Johnson RM; Pepperman AB
    Bull Environ Contam Toxicol; 2001 Jul; 67(1):113-21. PubMed ID: 11381320
    [No Abstract]   [Full Text] [Related]  

  • 42. Atrazine, alachlor, and carbofuran contamination of well water in central Maine.
    Bushway RJ; Hurst HL; Perkins LB; Tian L; Cabanillas CG; Young BE; Ferguson BS; Jennings HS
    Bull Environ Contam Toxicol; 1992 Jul; 49(1):1-9. PubMed ID: 1392281
    [No Abstract]   [Full Text] [Related]  

  • 43. Watershed vulnerability to herbicide transport in northern Missouri and southern Iowa streams.
    Lerch RN; Blanchard PE
    Environ Sci Technol; 2003 Dec; 37(24):5518-27. PubMed ID: 14717159
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Runoff of trifluralin, metolachlor, and metribuzin from a clay loam soil of Louisiana.
    Kim JH; Feagley SE
    J Environ Sci Health B; 2002 Sep; 37(5):405-15. PubMed ID: 12369759
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Herbicide concentrations in the Mississippi River Basin-the importance of chloroacetanilide herbicide degradates.
    Rebich RA; Coupe RH; Thurman EM
    Sci Total Environ; 2004 Apr; 321(1-3):189-99. PubMed ID: 15050395
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Detection of pesticides and pesticide metabolites using the cross reactivity of enzyme immunoassays.
    Thurman EM; Aga DS
    J AOAC Int; 2001; 84(1):162-7. PubMed ID: 11234804
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Occurrence, transportation, and distribution difference of typical herbicides from estuary to bay.
    Ouyang W; Zhang Y; Gu X; Tysklind M; Lin C; Wang B; Xin M
    Environ Int; 2019 Sep; 130():104858. PubMed ID: 31212164
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Constructed wetlands as a component of the agricultural landscape: mitigation of herbicides in simulated runoff from upland drainage areas.
    Locke MA; Weaver MA; Zablotowicz RM; Steinriede RW; Bryson CT; Cullum RF
    Chemosphere; 2011 Jun; 83(11):1532-8. PubMed ID: 21329960
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of simulated sunlight on atrazine and metolachlor toxicity of surface waters.
    Lin YJ; Karuppiah M; Shaw A; Gupta G
    Ecotoxicol Environ Saf; 1999 May; 43(1):35-7. PubMed ID: 10330318
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sorption of acetochlor, S-metolachlor, and atrazine in surface and subsurface soil horizons of Argentina.
    Bedmar F; Daniel PE; Costa JL; Giménez D
    Environ Toxicol Chem; 2011 Sep; 30(9):1990-6. PubMed ID: 21692102
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fate and movement of atrazine, cyanazine, metolachlor and selected degradation products in water resources of the deep Loess Hills of Southwestern Iowa, USA.
    Steinheimer TR; Scoggin KD
    J Environ Monit; 2001 Feb; 3(1):126-32. PubMed ID: 11253005
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Distribution of atrazine, simazine, alachlor, and metolachlor in soil profiles in Connecticut.
    Huang LQ; Frink CR
    Bull Environ Contam Toxicol; 1989 Jul; 43(1):159-64. PubMed ID: 2758133
    [No Abstract]   [Full Text] [Related]  

  • 53. Formation and transport of the sulfonic acid metabolites of alachlor and metolachlor in soil.
    Aga DS; Thurman EM
    Environ Sci Technol; 2001 Jun; 35(12):2455-60. PubMed ID: 11432548
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Neutral degradates of chloroacetamide herbicides: occurrence in drinking water and removal during conventional water treatment.
    Hladik ML; Bouwer EJ; Roberts AL
    Water Res; 2008 Dec; 42(20):4905-14. PubMed ID: 18947850
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effectiveness of Integrated Best Management Practices on Mitigation of Atrazine and Metolachlor in an Agricultural Lake Watershed.
    Lizotte R; Locke M; Bingner R; Steinriede RW; Smith S
    Bull Environ Contam Toxicol; 2017 Apr; 98(4):447-453. PubMed ID: 28078369
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Rapid method for the determination of alachlor, atrazine and metolachlor in groundwater by solid-phase extraction.
    Brooks MW; Jenkins J; Jimenez M; Quinn T; Clark JM
    Analyst; 1989 Mar; 114(3):405-6. PubMed ID: 2719285
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Leaching of trifluralin, metolachlor, and metribuzin in a clay loam soil of Louisiana.
    Kim JH; Feagley SE
    J Environ Sci Health B; 2002 Sep; 37(5):393-403. PubMed ID: 12369758
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Water-compatible magnetic imprinted microspheres for rapid separation and determination of triazine herbicides in environmental water.
    Qiao F; Row KH; Wang M
    J Chromatogr B Analyt Technol Biomed Life Sci; 2014 Apr; 957():84-9. PubMed ID: 24657415
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Impact of glyphosate-tolerant soybean and glufosinate-tolerant corn production on herbicide losses in surface runoff.
    Shipitalo MJ; Malone RW; Owens LB
    J Environ Qual; 2008; 37(2):401-8. PubMed ID: 18268303
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of sugarcane cropping systems on herbicide losses in surface runoff.
    Nachimuthu G; Halpin NV; Bell MJ
    Sci Total Environ; 2016 Jul; 557-558():773-84. PubMed ID: 27046141
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.