BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 10806197)

  • 21. Kinetic characterization of human glutamine-fructose-6-phosphate amidotransferase I: potent feedback inhibition by glucosamine 6-phosphate.
    Broschat KO; Gorka C; Page JD; Martin-Berger CL; Davies MS; Huang Hc HC; Gulve EA; Salsgiver WJ; Kasten TP
    J Biol Chem; 2002 Apr; 277(17):14764-70. PubMed ID: 11842094
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular cloning, cDNA sequence, and bacterial expression of human glutamine:fructose-6-phosphate amidotransferase.
    McKnight GL; Mudri SL; Mathewes SL; Traxinger RR; Marshall S; Sheppard PO; O'Hara PJ
    J Biol Chem; 1992 Dec; 267(35):25208-12. PubMed ID: 1460020
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Complete inhibition of glucose-induced desensitization of the glucose transport system by inhibitors of mRNA synthesis. Evidence for rapid turnover of glutamine:fructose-6-phosphate amidotransferase.
    Marshall S; Bacote V; Traxinger RR
    J Biol Chem; 1991 Jun; 266(16):10155-61. PubMed ID: 2037572
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hexosamine biosynthesis in keratinocytes: roles of GFAT and GNPDA enzymes in the maintenance of UDP-GlcNAc content and hyaluronan synthesis.
    Oikari S; Makkonen K; Deen AJ; Tyni I; Kärnä R; Tammi RH; Tammi MI
    Glycobiology; 2016 Jul; 26(7):710-22. PubMed ID: 26887390
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular cloning, sequencing, and expression of a L -glutamine D-fructose 6-phosphate amidotransferase gene from Volvariella volvacea.
    Luo C; Shao W; Li X; Chen Z; Liu Y
    Protein J; 2009 Jan; 28(1):34-43. PubMed ID: 19165584
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cloning and partial characterization of the mouse glutamine:fructose-6-phosphate amidotransferase (GFAT) gene promoter.
    Sayeski PP; Wang D; Su K; Han IO; Kudlow JE
    Nucleic Acids Res; 1997 Apr; 25(7):1458-66. PubMed ID: 9060444
    [TBL] [Abstract][Full Text] [Related]  

  • 27. mTORC2 modulates the amplitude and duration of GFAT1 Ser-243 phosphorylation to maintain flux through the hexosamine pathway during starvation.
    Moloughney JG; Vega-Cotto NM; Liu S; Patel C; Kim PK; Wu CC; Albaciete D; Magaway C; Chang A; Rajput S; Su X; Werlen G; Jacinto E
    J Biol Chem; 2018 Oct; 293(42):16464-16478. PubMed ID: 30201609
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of a Direct Biosynthetic Pathway for UDP-
    Dadashipour M; Iwamoto M; Hossain MM; Akutsu JI; Zhang Z; Kawarabayasi Y
    J Bacteriol; 2018 May; 200(10):. PubMed ID: 29507091
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High glucose-induced transforming growth factor beta1 production is mediated by the hexosamine pathway in porcine glomerular mesangial cells.
    Kolm-Litty V; Sauer U; Nerlich A; Lehmann R; Schleicher ED
    J Clin Invest; 1998 Jan; 101(1):160-9. PubMed ID: 9421478
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance.
    Marshall S; Bacote V; Traxinger RR
    J Biol Chem; 1991 Mar; 266(8):4706-12. PubMed ID: 2002019
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vivo and in vitro evidence that chronic activation of the hexosamine biosynthetic pathway interferes with leptin-dependent STAT3 phosphorylation.
    Zimmerman AD; Harris RB
    Am J Physiol Regul Integr Comp Physiol; 2015 Mar; 308(6):R543-55. PubMed ID: 25568075
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hexosamine-induced fibronectin protein synthesis in mesangial cells is associated with increases in cAMP responsive element binding (CREB) phosphorylation and nuclear CREB: the involvement of protein kinases A and C.
    Singh LP; Andy J; Anyamale V; Greene K; Alexander M; Crook ED
    Diabetes; 2001 Oct; 50(10):2355-62. PubMed ID: 11574420
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Angiotensin II activates the GFAT promoter in mesangial cells.
    James LR; Ingram A; Ly H; Thai K; Cai L; Scholey JW
    Am J Physiol Renal Physiol; 2001 Jul; 281(1):F151-62. PubMed ID: 11399656
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The cAMP signalling pathway activates CREB through PKA, p38 and MSK1 in NIH 3T3 cells.
    Delghandi MP; Johannessen M; Moens U
    Cell Signal; 2005 Nov; 17(11):1343-51. PubMed ID: 16125054
    [TBL] [Abstract][Full Text] [Related]  

  • 35. GFPT2/GFAT2 and AMDHD2 act in tandem to control the hexosamine pathway.
    Kroef V; Ruegenberg S; Horn M; Allmeroth K; Ebert L; Bozkus S; Miethe S; Elling U; Schermer B; Baumann U; Denzel MS
    Elife; 2022 Mar; 11():. PubMed ID: 35229715
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Glutamine: fructose-6-phosphate amidotransferase activity and gene expression are regulated in a tissue-specific fashion in pregnant rats.
    Yki-Järvinen H; Nyman T; Rissanen E; Leino M; Hämäläinen S; Virkamäki A; Hauguel-de Mouzon S
    Life Sci; 1999; 65(2):215-23. PubMed ID: 10416827
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enzymatic and structural properties of human glutamine:fructose-6-phosphate amidotransferase 2 (hGFAT2).
    Oliveira IA; Allonso D; Fernandes TVA; Lucena DMS; Ventura GT; Dias WB; Mohana-Borges RS; Pascutti PG; Todeschini AR
    J Biol Chem; 2021; 296():100180. PubMed ID: 33303629
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Oligomeric structure and regulation of Candida albicans glucosamine-6-phosphate synthase.
    Milewski S; Kuszczak D; Jedrzejczak R; Smith RJ; Brown AJ; Gooday GW
    J Biol Chem; 1999 Feb; 274(7):4000-8. PubMed ID: 9933591
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Long PDE4 cAMP specific phosphodiesterases are activated by protein kinase A-mediated phosphorylation of a single serine residue in Upstream Conserved Region 1 (UCR1).
    MacKenzie SJ; Baillie GS; McPhee I; MacKenzie C; Seamons R; McSorley T; Millen J; Beard MB; van Heeke G; Houslay MD
    Br J Pharmacol; 2002 Jun; 136(3):421-33. PubMed ID: 12023945
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of sites required for down-regulation of Na+/H+ exchanger NHE3 activity by cAMP-dependent protein kinase. phosphorylation-dependent and -independent mechanisms.
    Kurashima K; Yu FH; Cabado AG; Szabó EZ; Grinstein S; Orlowski J
    J Biol Chem; 1997 Nov; 272(45):28672-9. PubMed ID: 9353335
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.