BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 10806394)

  • 1. Oxidized galectin-1 promotes axonal regeneration in peripheral nerves but does not possess lectin properties.
    Inagaki Y; Sohma Y; Horie H; Nozawa R; Kadoya T
    Eur J Biochem; 2000 May; 267(10):2955-64. PubMed ID: 10806394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Galectin-1 regulates initial axonal growth in peripheral nerves after axotomy.
    Horie H; Inagaki Y; Sohma Y; Nozawa R; Okawa K; Hasegawa M; Muramatsu N; Kawano H; Horie M; Koyama H; Sakai I; Takeshita K; Kowada Y; Takano M; Kadoya T
    J Neurosci; 1999 Nov; 19(22):9964-74. PubMed ID: 10559404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidized galectin-1 stimulates macrophages to promote axonal regeneration in peripheral nerves after axotomy.
    Horie H; Kadoya T; Hikawa N; Sango K; Inoue H; Takeshita K; Asawa R; Hiroi T; Sato M; Yoshioka T; Ishikawa Y
    J Neurosci; 2004 Feb; 24(8):1873-80. PubMed ID: 14985427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of oxidized galectin-1 as an initial repair regulatory factor after axotomy in peripheral nerves.
    Horie H; Kadoya T
    Neurosci Res; 2000 Oct; 38(2):131-7. PubMed ID: 11000439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidized galectin-1 is an essential factor for peripheral nerve regeneration.
    Horie H; Kadoya T; Sango K; Hasegawa M
    Curr Drug Targets; 2005 Jun; 6(4):385-94. PubMed ID: 16026257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidized galectin-1 stimulates the migration of Schwann cells from both proximal and distal stumps of transected nerves and promotes axonal regeneration after peripheral nerve injury.
    Fukaya K; Hasegawa M; Mashitani T; Kadoya T; Horie H; Hayashi Y; Fujisawa H; Tachibana O; Kida S; Yamashita J
    J Neuropathol Exp Neurol; 2003 Feb; 62(2):162-72. PubMed ID: 12578226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and functional studies of galectin-1: a novel axonal regeneration-promoting activity for oxidized galectin-1.
    Kadoya T; Horie H
    Curr Drug Targets; 2005 Jun; 6(4):375-83. PubMed ID: 16026256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Galectin-1 plays essential roles in adult mammalian nervous tissues. Roles of oxidized galectin-1.
    Horie H; Kadoya T
    Glycoconj J; 2002; 19(7-9):479-89. PubMed ID: 14758071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidized galectin-1 advances the functional recovery after peripheral nerve injury.
    Kadoya T; Oyanagi K; Kawakami E; Hasegawa M; Inagaki Y; Sohma Y; Horie H
    Neurosci Lett; 2005 Jun; 380(3):284-8. PubMed ID: 15862903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and functional characterization of a novel tumor-derived rat galectin-1 having transforming growth factor (TGF) activity: the relationship between intramolecular disulfide bridges and TGF activity.
    Yamaoka K; Ingendoh A; Tsubuki S; Nagai Y; Sanai Y
    J Biochem; 1996 May; 119(5):878-86. PubMed ID: 8797087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Galectin-1beta, a natural monomeric form of galectin-1 lacking its six amino-terminal residues promotes axonal regeneration but not cell death.
    Miura T; Takahashi M; Horie H; Kurushima H; Tsuchimoto D; Sakumi K; Nakabeppu Y
    Cell Death Differ; 2004 Oct; 11(10):1076-83. PubMed ID: 15181456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subunit molecular mass assignment of 14,654 Da to the soluble beta-galactoside-binding lectin from bovine heart muscle and demonstration of intramolecular disulfide bonding associated with oxidative inactivation.
    Tracey BM; Feizi T; Abbott WM; Carruthers RA; Green BN; Lawson AM
    J Biol Chem; 1992 May; 267(15):10342-7. PubMed ID: 1587821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis, localization and externalization of galectin-1 in mature dorsal root ganglion neurons and Schwann cells.
    Sango K; Tokashiki A; Ajiki K; Horie M; Kawano H; Watabe K; Horie H; Kadoya T
    Eur J Neurosci; 2004 Jan; 19(1):55-64. PubMed ID: 14750963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of monomeric forms of galectin-1 generated by site-directed mutagenesis.
    Cho M; Cummings RD
    Biochemistry; 1996 Oct; 35(40):13081-8. PubMed ID: 8855944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Galectin-1, a beta-galactoside-binding lectin in Chinese hamster ovary cells. I. Physical and chemical characterization.
    Cho M; Cummings RD
    J Biol Chem; 1995 Mar; 270(10):5198-206. PubMed ID: 7890630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of amino acid substitution by sited-directed mutagenesis on the carbohydrate recognition and stability of human 14-kDa beta-galactoside-binding lectin.
    Hirabayashi J; Kasai K
    J Biol Chem; 1991 Dec; 266(35):23648-53. PubMed ID: 1721052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biphasic modulation of cell growth by recombinant human galectin-1.
    Adams L; Scott GK; Weinberg CS
    Biochim Biophys Acta; 1996 Jun; 1312(2):137-44. PubMed ID: 8672536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of neuronal and glial galectin-1 expression by peripheral and central axotomy of rat primary afferent neurons.
    McGraw J; Gaudet AD; Oschipok LW; Kadoya T; Horie H; Steeves JD; Tetzlaff W; Ramer MS
    Exp Neurol; 2005 Sep; 195(1):103-14. PubMed ID: 15893752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Involvement of laser photo-CIDNP (chemically induced dynamic nuclear polarization)-reactive amino acid side chains in ligand binding by galactoside-specific lectins in solution.
    Siebert HC; Adar R; Arango R; Burchert M; Kaltner H; Kayser G; Tajkhorshid E; von der Lieth CW; Kaptein R; Sharon N; Vliegenthart JF; Gabius HJ
    Eur J Biochem; 1997 Oct; 249(1):27-38. PubMed ID: 9363750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ligand-mediated Galectin-1 endocytosis prevents intraneural H2O2 production promoting F-actin dynamics reactivation and axonal re-growth.
    Quintá HR; Wilson C; Blidner AG; González-Billault C; Pasquini LA; Rabinovich GA; Pasquini JM
    Exp Neurol; 2016 Sep; 283(Pt A):165-78. PubMed ID: 27296316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.