These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
438 related articles for article (PubMed ID: 10806423)
1. Regulation of pyruvate metabolism in chemostat cultures of Kluyveromyces lactis CBS 2359. Zeeman AM; Kuyper M; Pronk JT; van Dijken JP; Steensma HY Yeast; 2000 May; 16(7):611-20. PubMed ID: 10806423 [TBL] [Abstract][Full Text] [Related]
2. Regulation of alcoholic fermentation in batch and chemostat cultures of Kluyveromyces lactis CBS 2359. Kiers J; Zeeman AM; Luttik M; Thiele C; Castrillo JI; Steensma HY; van Dijken JP; Pronk JT Yeast; 1998 Mar; 14(5):459-69. PubMed ID: 9559553 [TBL] [Abstract][Full Text] [Related]
3. The acetyl co-enzyme A synthetase genes of Kluyveromyces lactis. Zeeman AM; Steensma HY Yeast; 2003 Jan; 20(1):13-23. PubMed ID: 12489122 [TBL] [Abstract][Full Text] [Related]
4. Inactivation of the Kluyveromyces lactis KlPDA1 gene leads to loss of pyruvate dehydrogenase activity, impairs growth on glucose and triggers aerobic alcoholic fermentation. Zeeman AM; Luttik MAH; Thiele C; van Dijken JP; Pronk JT; Steensma HY Microbiology (Reading); 1998 Dec; 144 ( Pt 12)():3437-3446. PubMed ID: 9884236 [TBL] [Abstract][Full Text] [Related]
5. The RAG3 gene of Kluyveromyces lactis is involved in the transcriptional regulation of genes coding for enzymes implicated in pyruvate utilization and genes of the biosynthesis of thiamine pyrophosphate. Tizzani L; Meacock P; Frontali L; Wésolowski-Louvel M FEMS Microbiol Lett; 1998 Nov; 168(1):25-30. PubMed ID: 9812359 [TBL] [Abstract][Full Text] [Related]
6. Enzymic analysis of the crabtree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae. Postma E; Verduyn C; Scheffers WA; Van Dijken JP Appl Environ Microbiol; 1989 Feb; 55(2):468-77. PubMed ID: 2566299 [TBL] [Abstract][Full Text] [Related]
7. Regulation of glycolytic enzymes and the Crabtree effect in galactose-limited continuous cultures of Saccharomyces cerevisiae. Sierkstra LN; Nouwen NP; Verbakel JM; Verrips CT Yeast; 1993 Jul; 9(7):787-95. PubMed ID: 8368013 [TBL] [Abstract][Full Text] [Related]
8. Regulation of the expression of the Kluyveromyces lactis PDC1 gene: carbon source-responsive elements and autoregulation. Destruelle M; Menghini R; Frontali L; Bianchi MM Yeast; 1999 Mar; 15(5):361-70. PubMed ID: 10219994 [TBL] [Abstract][Full Text] [Related]
9. Characterization of a Kluyveromyces lactis mutant with altered regulation of mitochondrial alcohol dehydrogenases. Mazzoni C; Iacchini S; Serafini A; Falcone C FEMS Yeast Res; 2006 May; 6(3):421-7. PubMed ID: 16630282 [TBL] [Abstract][Full Text] [Related]
10. The crystal structure of pyruvate decarboxylase from Kluyveromyces lactis. Implications for the substrate activation mechanism of this enzyme. Kutter S; Wille G; Relle S; Weiss MS; Hübner G; König S FEBS J; 2006 Sep; 273(18):4199-209. PubMed ID: 16939618 [TBL] [Abstract][Full Text] [Related]
11. Analysis of transcription and translation of glycolytic enzymes in glucose-limited continuous cultures of Saccharomyces cerevisiae. Sierkstra LN; Verbakel JM; Verrips CT J Gen Microbiol; 1992 Dec; 138(12):2559-66. PubMed ID: 1487726 [TBL] [Abstract][Full Text] [Related]
12. Ethanol formation and enzyme activities around glucose-6-phosphate in Kluyveromyces marxianus CBS 6556 exposed to glucose or lactose excess. Bellaver LH; de Carvalho NM; Abrahão-Neto J; Gombert AK FEMS Yeast Res; 2004 May; 4(7):691-8. PubMed ID: 15093772 [TBL] [Abstract][Full Text] [Related]
13. Energetic aspects of glucose metabolism in a pyruvate-dehydrogenase-negative mutant of Saccharomyces cerevisiae. Pronk JT; Wenzel TJ; Luttik MA; Klaassen CC; Scheffers WA; Steensma HY; van Dijken JP Microbiology (Reading); 1994 Mar; 140 ( Pt 3)():601-10. PubMed ID: 8012582 [TBL] [Abstract][Full Text] [Related]
14. Production of glucoamylase in pyruvate decarboxylase deletion mutants of the yeast Kluyveromyces lactis. Salani F; Bianchi MM Appl Microbiol Biotechnol; 2006 Jan; 69(5):564-72. PubMed ID: 16175368 [TBL] [Abstract][Full Text] [Related]
15. Two mechanisms for oxidation of cytosolic NADPH by Kluyveromyces lactis mitochondria. Overkamp KM; Bakker BM; Steensma HY; van Dijken JP; Pronk JT Yeast; 2002 Jul; 19(10):813-24. PubMed ID: 12112236 [TBL] [Abstract][Full Text] [Related]
16. Glucose metabolism, enzymic analysis and product formation in chemostat culture of Hanseniaspora uvarum. Venturin C; Boze H; Moulin G; Galzy P Yeast; 1995 Apr; 11(4):327-36. PubMed ID: 7785333 [TBL] [Abstract][Full Text] [Related]
17. The alcohol dehydrogenase system in the yeast, Kluyveromyces lactis. Saliola M; Shuster JR; Falcone C Yeast; 1990; 6(3):193-204. PubMed ID: 2190430 [TBL] [Abstract][Full Text] [Related]
18. The oxygen level determines the fermentation pattern in Kluyveromyces lactis. Merico A; Galafassi S; Piskur J; Compagno C FEMS Yeast Res; 2009 Aug; 9(5):749-56. PubMed ID: 19500150 [TBL] [Abstract][Full Text] [Related]
19. Mutations of the RAG3 gene encoding a regulator of fermentation in Kluyveromyces lactis are suppressed by a mutation of the transcription factor gene KlGCR1. Tizzani L; Wésolowski-Louvel M; Forte V; Romitelli F; Salani F; Lemaire M; Neil H; Bianchi MM FEMS Yeast Res; 2007 Aug; 7(5):675-82. PubMed ID: 17559574 [TBL] [Abstract][Full Text] [Related]
20. The high fermentative metabolism of Kluyveromyces marxianus UFV-3 relies on the increased expression of key lactose metabolic enzymes. Diniz RH; Silveira WB; Fietto LG; Passos FM Antonie Van Leeuwenhoek; 2012 Mar; 101(3):541-50. PubMed ID: 22068918 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]