BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 10806478)

  • 1. Motor proteins regulate force interactions between microtubules and microfilaments in the axon.
    Ahmad FJ; Hughey J; Wittmann T; Hyman A; Greaser M; Baas PW
    Nat Cell Biol; 2000 May; 2(5):276-80. PubMed ID: 10806478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of microtubules and actin filaments in the movement of mitochondria in the axons and dendrites of cultured hippocampal neurons.
    Ligon LA; Steward O
    J Comp Neurol; 2000 Nov; 427(3):351-61. PubMed ID: 11054698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antagonistic forces generated by cytoplasmic dynein and myosin-II during growth cone turning and axonal retraction.
    Myers KA; Tint I; Nadar CV; He Y; Black MM; Baas PW
    Traffic; 2006 Oct; 7(10):1333-51. PubMed ID: 16911591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The dynein inhibitor Ciliobrevin D inhibits the bidirectional transport of organelles along sensory axons and impairs NGF-mediated regulation of growth cones and axon branches.
    Sainath R; Gallo G
    Dev Neurobiol; 2015 Jul; 75(7):757-77. PubMed ID: 25404503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microtubules, but not actin microfilaments, regulate vacuole motility and morphology in hyphae of Pisolithus tinctorius.
    Hyde GJ; Davies D; Perasso L; Cole L; Ashford AE
    Cell Motil Cytoskeleton; 1999; 42(2):114-24. PubMed ID: 10215421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pigment granule translocation in red ovarian chromatophores from the palaemonid shrimp Macrobrachium olfersi (Weigmann, 1836): functional roles for the cytoskeleton and its molecular motors.
    Milograna SR; Ribeiro MR; Baqui MM; McNamara JC
    Comp Biochem Physiol A Mol Integr Physiol; 2014 Dec; 178():90-101. PubMed ID: 25182860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myosin and the PAR proteins polarize microfilament-dependent forces that shape and position mitotic spindles in Caenorhabditis elegans.
    Severson AF; Bowerman B
    J Cell Biol; 2003 Apr; 161(1):21-6. PubMed ID: 12695495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport of neurofilaments in growing axons requires microtubules but not actin filaments.
    Francis F; Roy S; Brady ST; Black MM
    J Neurosci Res; 2005 Feb; 79(4):442-50. PubMed ID: 15635594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynein binds to beta-catenin and may tether microtubules at adherens junctions.
    Ligon LA; Karki S; Tokito M; Holzbaur EL
    Nat Cell Biol; 2001 Oct; 3(10):913-7. PubMed ID: 11584273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microtubule reconfiguration during axonal retraction induced by nitric oxide.
    He Y; Yu W; Baas PW
    J Neurosci; 2002 Jul; 22(14):5982-91. PubMed ID: 12122060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myosin II activity is required for severing-induced axon retraction in vitro.
    Gallo G
    Exp Neurol; 2004 Sep; 189(1):112-21. PubMed ID: 15296841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypersensitivity to cytoskeletal antagonists demonstrates microtubule-microfilament cross-talk in the control of root elongation in Arabidopsis thaliana.
    Collings DA; Lill AW; Himmelspach R; Wasteneys GO
    New Phytol; 2006; 170(2):275-90. PubMed ID: 16608453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional coordination of microtubule-based and actin-based motility in melanophores.
    Rodionov VI; Hope AJ; Svitkina TM; Borisy GG
    Curr Biol; 1998 Jan; 8(3):165-8. PubMed ID: 9443917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diatom gliding is the result of an actin-myosin motility system.
    Poulsen NC; Spector I; Spurck TP; Schultz TF; Wetherbee R
    Cell Motil Cytoskeleton; 1999; 44(1):23-33. PubMed ID: 10470016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reorganization of microfilaments and microtubules by thermal stress in two-cell bovine embryos.
    Rivera RM; Kelley KL; Erdos GW; Hansen PJ
    Biol Reprod; 2004 Jun; 70(6):1852-62. PubMed ID: 14960486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myosin cooperates with microtubule motors during organelle transport in melanophores.
    Rogers SL; Gelfand VI
    Curr Biol; 1998 Jan; 8(3):161-4. PubMed ID: 9443916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of acrylamide, latrunculin, and nocodazole on intracellular transport and cytoskeletal organization in melanophores.
    Aspengren S; Wielbass L; Wallin M
    Cell Motil Cytoskeleton; 2006 Jul; 63(7):423-36. PubMed ID: 16671098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microtubule transport in the axon: Re-thinking a potential role for the actin cytoskeleton.
    Myers KA; He Y; Hasaka TP; Baas PW
    Neuroscientist; 2006 Apr; 12(2):107-18. PubMed ID: 16514008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microtubules and microfilaments coordinate to direct a fountain streaming pattern in elongating conifer pollen tube tips.
    Justus CD; Anderhag P; Goins JL; Lazzaro MD
    Planta; 2004 May; 219(1):103-9. PubMed ID: 14740215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of dynactin disruption and dynein depletion on axonal microtubules.
    Ahmad FJ; He Y; Myers KA; Hasaka TP; Francis F; Black MM; Baas PW
    Traffic; 2006 May; 7(5):524-37. PubMed ID: 16643276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.