BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 10806995)

  • 21. Progress in antisense technology.
    Crooke ST
    Annu Rev Med; 2004; 55():61-95. PubMed ID: 14746510
    [TBL] [Abstract][Full Text] [Related]  

  • 22. To cleave or not to cleave: ribozymes and antisense.
    Woolf TM
    Antisense Res Dev; 1995; 5(3):227-32. PubMed ID: 8785479
    [No Abstract]   [Full Text] [Related]  

  • 23. How RNase HI (Escherichia coli) promoted site-selective hydrolysis works on RNA in duplex with carba-LNA and LNA substituted antisense strands in an antisense strategy context?
    Plashkevych O; Li Q; Chattopadhyaya J
    Mol Biosyst; 2017 May; 13(5):921-938. PubMed ID: 28352859
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assay for evaluating ribonuclease H-mediated degradation of RNA-antisense oligonucleotide duplexes.
    Galarneau A; Min KL; Mangos MM; Damha MJ
    Methods Mol Biol; 2005; 288():65-80. PubMed ID: 15333898
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A short phosphodiester window is sufficient to direct RNase H-dependent RNA cleavage by antisense peptide nucleic acid.
    Malchère C; Verheijen J; van der Laan S; Bastide L; van Boom J; Lebleu B; Robbins I
    Antisense Nucleic Acid Drug Dev; 2000 Dec; 10(6):463-8. PubMed ID: 11198930
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessment of high-affinity hybridization, RNase H cleavage, and covalent linkage in translation arrest by antisense oligonucleotides.
    Gee JE; Robbins I; van der Laan AC; van Boom JH; Colombier C; Leng M; Raible AM; Nelson JS; Lebleu B
    Antisense Nucleic Acid Drug Dev; 1998 Apr; 8(2):103-11. PubMed ID: 9593048
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of bacterial RNase P RNA as a drug target.
    Willkomm DK; Gruegelsiepe H; Goudinakis O; Kretschmer-Kazemi Far R; Bald R; Erdmann VA; Hartmann RK
    Chembiochem; 2003 Oct; 4(10):1041-8. PubMed ID: 14523922
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Potent and selective inhibition of gene expression by an antisense heptanucleotide.
    Wagner RW; Matteucci MD; Grant D; Huang T; Froehler BC
    Nat Biotechnol; 1996 Jul; 14(7):840-4. PubMed ID: 9631007
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Antisense inhibition of Escherichia coli RNase P RNA: mechanistic aspects.
    Gruegelsiepe H; Willkomm DK; Goudinakis O; Hartmann RK
    Chembiochem; 2003 Oct; 4(10):1049-56. PubMed ID: 14523923
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Antisense properties of peptide nucleic acid.
    Larsen HJ; Bentin T; Nielsen PE
    Biochim Biophys Acta; 1999 Dec; 1489(1):159-66. PubMed ID: 10807005
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 2'-O-[2-[(N,N-dimethylamino)oxy]ethyl]-modified oligonucleotides inhibit expression of mRNA in vitro and in vivo.
    Prakash TP; Johnston JF; Graham MJ; Condon TP; Manoharan M
    Nucleic Acids Res; 2004; 32(2):828-33. PubMed ID: 14762210
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fast and accurate determination of sites along the FUT2 in vitro transcript that are accessible to antisense oligonucleotides by application of secondary structure predictions and RNase H in combination with MALDI-TOF mass spectrometry.
    Gabler A; Krebs S; Seichter D; Förster M
    Nucleic Acids Res; 2003 Aug; 31(15):e79. PubMed ID: 12888531
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanisms of the inhibition of reverse transcription by antisense oligonucleotides.
    Boiziau C; Thuong NT; Toulmé JJ
    Proc Natl Acad Sci U S A; 1992 Jan; 89(2):768-72. PubMed ID: 1370586
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oligonucleotides comprised of alternating 2'-deoxy-2'-fluoro-beta-D-arabinonucleosides and D-2'-deoxyribonucleosides (2'F-ANA/DNA 'altimers') induce efficient RNA cleavage mediated by RNase H.
    Min KL; Viazovkina E; Galarneau A; Parniak MA; Damha MJ
    Bioorg Med Chem Lett; 2002 Sep; 12(18):2651-4. PubMed ID: 12182880
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pathways of degradation and mechanism of action of antisense oligonucleotides in Xenopus laevis embryos.
    Dagle JM; Weeks DL; Walder JA
    Antisense Res Dev; 1991; 1(1):11-20. PubMed ID: 1668307
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Antisense strategies.
    Crooke ST
    Curr Mol Med; 2004 Aug; 4(5):465-87. PubMed ID: 15267220
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kinetic characteristics of Escherichia coli RNase H1: cleavage of various antisense oligonucleotide-RNA duplexes.
    Crooke ST; Lemonidis KM; Neilson L; Griffey R; Lesnik EA; Monia BP
    Biochem J; 1995 Dec; 312 ( Pt 2)(Pt 2):599-608. PubMed ID: 8526876
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Potent antisense oligonucleotides to the human multidrug resistance-1 mRNA are rationally selected by mapping RNA-accessible sites with oligonucleotide libraries.
    Ho SP; Britton DH; Stone BA; Behrens DL; Leffet LM; Hobbs FW; Miller JA; Trainor GL
    Nucleic Acids Res; 1996 May; 24(10):1901-7. PubMed ID: 8657572
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis and anti-influenza virus-A activity of circular dumbbell RNA DNA chimeric oligonucleotides.
    Abe T; Hatta T; Yamakawa H; Takai K; Yokota T; Takaku H
    Nucleic Acids Symp Ser; 1997; (37):219-20. PubMed ID: 9586078
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oligonucleotides as modulators of cancer gene expression.
    Curcio LD; Bouffard DY; Scanlon KJ
    Pharmacol Ther; 1997; 74(3):317-32. PubMed ID: 9352587
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.