These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 10807562)

  • 1. Evaluating noncancer effects of trichloroethylene: dosimetry, mode of action, and risk assessment.
    Barton HA; Clewell HJ
    Environ Health Perspect; 2000 May; 108 Suppl 2(Suppl 2):323-34. PubMed ID: 10807562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating human variability in chemical risk assessment: hazard identification and dose-response assessment for noncancer oral toxicity of trichloroethylene.
    Barton HA; Flemming CD; Lipscomb JC
    Toxicology; 1996 Jul; 111(1-3):271-87. PubMed ID: 8711742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Moving from external exposure concentration to internal dose: duration extrapolation based on physiologically based pharmacokinetic derived estimates of internal dose.
    Simmons JE; Evans MV; Boyes WK
    J Toxicol Environ Health A; 2005 Jun 11-25; 68(11-12):927-50. PubMed ID: 16020185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of the potential impact of benchmark dose and pharmacokinetic modeling in noncancer risk assessment.
    Clewell HJ; Gentry PR; Gearhart JM
    J Toxicol Environ Health; 1997 Dec; 52(6):475-515. PubMed ID: 9397182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alternatives for a risk assessment on chronic noncancer effects from oral exposure to trichloroethylene.
    Barton HA; Das S
    Regul Toxicol Pharmacol; 1996 Dec; 24(3):269-85. PubMed ID: 8975757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using physiologically-based pharmacokinetic modeling to address nonlinear kinetics and changes in rodent physiology and metabolism due to aging and adaptation in deriving reference values for propylene glycol methyl ether and propylene glycol methyl ether acetate.
    Kirman CR; Sweeney LM; Corley R; Gargas ML
    Risk Anal; 2005 Apr; 25(2):271-84. PubMed ID: 15876203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a physiologically based pharmacokinetic model of trichloroethylene and its metabolites for use in risk assessment.
    Clewell HJ; Gentry PR; Covington TR; Gearhart JM
    Environ Health Perspect; 2000 May; 108 Suppl 2(Suppl 2):283-305. PubMed ID: 10807559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A trichloroethylene risk assessment using a Monte Carlo analysis of parameter uncertainty in conjunction with physiologically-based pharmacokinetic modeling.
    Cronin WJ; Oswald EJ; Shelley ML; Fisher JW; Flemming CD
    Risk Anal; 1995 Oct; 15(5):555-65. PubMed ID: 7501875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dosimetric adjustments for interspecies extrapolation of inhaled poorly soluble particles (PSP).
    Jarabek AM; Asgharian B; Miller FJ
    Inhal Toxicol; 2005; 17(7-8):317-34. PubMed ID: 16020031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trichloroethylene cancer risk: simplified calculation of PBPK-based MCLs for cytotoxic end points.
    Bogen KT; Gold LS
    Regul Toxicol Pharmacol; 1997 Feb; 25(1):26-42. PubMed ID: 9056499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of an updated PBPK model for trichloroethylene and metabolites in mice, and its application to discern the role of oxidative metabolism in TCE-induced hepatomegaly.
    Evans MV; Chiu WA; Okino MS; Caldwell JC
    Toxicol Appl Pharmacol; 2009 May; 236(3):329-40. PubMed ID: 19249323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmacokinetic modeling of trichloroethylene and trichloroacetic acid in humans.
    Allen BC; Fisher JW
    Risk Anal; 1993 Feb; 13(1):71-86. PubMed ID: 8451462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trichloroethylene and cancer: epidemiologic evidence.
    Scott CS; Cogliano VJ
    Environ Health Perspect; 2000 May; 108 Suppl 2():159-60. PubMed ID: 10807549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiologically based pharmacokinetic models for trichloroethylene and its oxidative metabolites.
    Fisher JW
    Environ Health Perspect; 2000 May; 108 Suppl 2(Suppl 2):265-73. PubMed ID: 10807557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trichloroacetic acid: updated estimates of its bioavailability and its contribution to trichloroethylene-induced mouse hepatomegaly.
    Chiu WA
    Toxicology; 2011 Jul; 285(3):114-25. PubMed ID: 21549800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tissue dosimetry expansion and cross-validation of rat and mouse physiologically based pharmacokinetic models for trichloroethylene.
    Keys DA; Bruckner JV; Muralidhara S; Fisher JW
    Toxicol Sci; 2003 Nov; 76(1):35-50. PubMed ID: 12915716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dose-response analyses of the carcinogenic effects of trichloroethylene in experimental animals.
    Rhomberg LR
    Environ Health Perspect; 2000 May; 108 Suppl 2(Suppl 2):343-58. PubMed ID: 10807564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating the risk of liver cancer in humans exposed to trichloroethylene using physiological models.
    Fisher JW; Allen BC
    Risk Anal; 1993 Feb; 13(1):87-95. PubMed ID: 8451463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of PBPK modeling in support of the derivation of toxicity reference values for 1,1,1-trichloroethane.
    Lu Y; Rieth S; Lohitnavy M; Dennison J; El-Masri H; Barton HA; Bruckner J; Yang RS
    Regul Toxicol Pharmacol; 2008 Mar; 50(2):249-60. PubMed ID: 18226845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bayesian population analysis of a harmonized physiologically based pharmacokinetic model of trichloroethylene and its metabolites.
    Hack CE; Chiu WA; Jay Zhao Q; Clewell HJ
    Regul Toxicol Pharmacol; 2006 Oct; 46(1):63-83. PubMed ID: 16889879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.