These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 10807754)

  • 1. Influence of fibrin network conformation and fibrin fiber diameter on fibrinolysis speed: dynamic and structural approaches by confocal microscopy.
    Collet JP; Park D; Lesty C; Soria J; Soria C; Montalescot G; Weisel JW
    Arterioscler Thromb Vasc Biol; 2000 May; 20(5):1354-61. PubMed ID: 10807754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic changes of fibrin architecture during fibrin formation and intrinsic fibrinolysis of fibrin-rich clots.
    Collet JP; Lesty C; Montalescot G; Weisel JW
    J Biol Chem; 2003 Jun; 278(24):21331-5. PubMed ID: 12642590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemical and biophysical conditions for blood clot lysis.
    Sabovic M; Blinc A
    Pflugers Arch; 2000; 440(5 Suppl):R134-6. PubMed ID: 11005642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorogenic fibrinogen and fibrin facilitate macromolecular assembly and dynamic assay of picomolar levels of plasminogen activators under well mixed conditions.
    Wu JH; Diamond SL
    Thromb Haemost; 1995 Aug; 74(2):711-7. PubMed ID: 8585011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical and biophysical conditions for blood clot lysis.
    Šabovič M; Blinc A
    Pflugers Arch; 2000 Jan; 440(Suppl 1):R134-R136. PubMed ID: 28008511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural studies of fibrinolysis by electron microscopy.
    Veklich Y; Francis CW; White J; Weisel JW
    Blood; 1998 Dec; 92(12):4721-9. PubMed ID: 9845538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Altered fibrin architecture is associated with hypofibrinolysis and premature coronary atherothrombosis.
    Collet JP; Allali Y; Lesty C; Tanguy ML; Silvain J; Ankri A; Blanchet B; Dumaine R; Gianetti J; Payot L; Weisel JW; Montalescot G
    Arterioscler Thromb Vasc Biol; 2006 Nov; 26(11):2567-73. PubMed ID: 16917107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physical determinants of fibrinolysis in single fibrin fibers.
    Bucay I; O'Brien ET; Wulfe SD; Superfine R; Wolberg AS; Falvo MR; Hudson NE
    PLoS One; 2015; 10(2):e0116350. PubMed ID: 25714359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The biochemical and physical process of fibrinolysis and effects of clot structure and stability on the lysis rate.
    Weisel JW; Litvinov RI
    Cardiovasc Hematol Agents Med Chem; 2008 Jul; 6(3):161-80. PubMed ID: 18673231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A structural and dynamic investigation of the facilitating effect of glycoprotein IIb/IIIa inhibitors in dissolving platelet-rich clots.
    Collet JP; Montalescot G; Lesty C; Weisel JW
    Circ Res; 2002 Mar; 90(4):428-34. PubMed ID: 11884372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dense and dangerous: The tissue plasminogen activator-resistant fibrinolysis shutdown phenotype is due to abnormal fibrin polymerization.
    Dow N; Coleman JR; Moore H; Osborn ZT; Sackheim AM; Hennig G; Butenas S; Nelson MT; Moore EE; Freeman K
    J Trauma Acute Care Surg; 2020 Feb; 88(2):258-265. PubMed ID: 31999655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Abnormal fibrin clot architecture in nephrotic patients is related to hypofibrinolysis: influence of plasma biochemical modifications: a possible mechanism for the high thrombotic tendency?
    Colle JP; Mishal Z; Lesty C; Mirshahi M; Peyne J; Baumelou A; Bensman A; Soria J; Soria C
    Thromb Haemost; 1999 Nov; 82(5):1482-9. PubMed ID: 10595642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of homocysteine on fibrin network lysis.
    Lauricella AM; Quintana I; Castañon M; Sassetti B; Kordich L
    Blood Coagul Fibrinolysis; 2006 Apr; 17(3):181-6. PubMed ID: 16575255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The interplay between tissue plasminogen activator domains and fibrin structures in the regulation of fibrinolysis: kinetic and microscopic studies.
    Longstaff C; Thelwell C; Williams SC; Silva MM; Szabó L; Kolev K
    Blood; 2011 Jan; 117(2):661-8. PubMed ID: 20966169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inherent fibrin fiber tension propels mechanisms of network clearance during fibrinolysis.
    Cone SJ; Fuquay AT; Litofsky JM; Dement TC; Carolan CA; Hudson NE
    Acta Biomater; 2020 Apr; 107():164-177. PubMed ID: 32105833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA, histones and neutrophil extracellular traps exert anti-fibrinolytic effects in a plasma environment.
    Varjú I; Longstaff C; Szabó L; Farkas ÁZ; Varga-Szabó VJ; Tanka-Salamon A; Machovich R; Kolev K
    Thromb Haemost; 2015 Jun; 113(6):1289-98. PubMed ID: 25789443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular mechanisms of the effect of ultrasound on the fibrinolysis of clots.
    Chernysh IN; Everbach CE; Purohit PK; Weisel JW
    J Thromb Haemost; 2015 Apr; 13(4):601-9. PubMed ID: 25619618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Abnormal fibrin structure and inhibition of fibrinolysis in patients with multiple myeloma.
    Carr ME; Dent RM; Carr SL
    J Lab Clin Med; 1996 Jul; 128(1):83-8. PubMed ID: 8759939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microscale structural changes of individual fibrin fibers during fibrinolysis.
    Lynch SR; Laverty SM; Bannish BE; Hudson NE
    Acta Biomater; 2022 Mar; 141():114-122. PubMed ID: 35007782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling fibrinolysis: 1D continuum models.
    Bannish BE; Keener JP; Woodbury M; Weisel JW; Fogelson AL
    Math Med Biol; 2014 Mar; 31(1):45-64. PubMed ID: 23220467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.