These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 10807988)

  • 1. Fluid mechanics of regurgitant jets and calculation of the effective regurgitant orifice in free or complex configurations.
    Diebold B; Delouche A; Decesare A; Delouche P; Guglielmi JP; Herment A
    J Biomech; 2000 Jun; 33(6):677-84. PubMed ID: 10807988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atrial inflow can alter regurgitant jet size: in vitro studies.
    Grimes RY; Nyarko SJ; Pulido GA; Yang S; Walker PG; Levine RA; Yoganathan AP
    Ultrasound Med Biol; 1995; 21(4):459-69. PubMed ID: 7571139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Color Doppler regurgitant characteristics of normal mechanical mitral valve prostheses in vitro.
    Baumgartner H; Khan S; DeRobertis M; Czer L; Maurer G
    Circulation; 1992 Jan; 85(1):323-32. PubMed ID: 1728464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How sensitive are jet centerline velocities to an opposing flow? Implications for using the centerline method to quantify regurgitant jet flow.
    Grimes RY; Hopmeyer J; Cape EG; Levine RA; Yoganathan AP
    J Biomech; 1996 Jul; 29(7):967-71. PubMed ID: 8809628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro flow mapping of regurgitant jets. Systematic description of free jet with laser Doppler velocimetry.
    Diebold B; Delouche A; Delouche P; Guglielmi JP; Dumee P; Herment A
    Circulation; 1996 Jul; 94(2):158-69. PubMed ID: 8674174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quasisteady behavior of pulsatile, confined, counterflowing jets: implications for the assessment of mitral and tricuspid regurgitation.
    Grimes RY; Pulido GA; Levine RA; Yoganathan AP
    J Biomech Eng; 1996 Nov; 118(4):498-505. PubMed ID: 8950653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Color Doppler jet area overestimates regurgitant volume when multiple jets are present.
    Lin BA; Forouhar AS; Pahlevan NM; Anastassiou CA; Grayburn PA; Thomas JD; Gharib M
    J Am Soc Echocardiogr; 2010 Sep; 23(9):993-1000. PubMed ID: 20696550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantification of heart valve regurgitation: a critical analysis from a theoretical and experimental point of view.
    Wranne B; Ask P; Loyd D
    Clin Physiol; 1985 Feb; 5(1):81-8. PubMed ID: 4038639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effective regurgitant orifice area: a noninvasive Doppler development of an old hemodynamic concept.
    Enriquez-Sarano M; Seward JB; Bailey KR; Tajik AJ
    J Am Coll Cardiol; 1994 Feb; 23(2):443-51. PubMed ID: 8294699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aortic valve morphology: an important in vitro determinant of proximal regurgitant jet width by Doppler color flow mapping.
    Taylor AL; Eichhorn EJ; Brickner ME; Eberhart RC; Grayburn PA
    J Am Coll Cardiol; 1990 Aug; 16(2):405-12. PubMed ID: 2373819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Value of proximal regurgitant jet size in tricuspid regurgitation.
    Rivera JM; Vandervoort P; Mele D; Weyman A; Thomas JD
    Am Heart J; 1996 Apr; 131(4):742-7. PubMed ID: 8721649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Technical and biologic sources of variability in the mapping of aortic, mitral and tricuspid color flow jets.
    Wong M; Matsumura M; Suzuki K; Omoto R
    Am J Cardiol; 1987 Oct; 60(10):847-51. PubMed ID: 3661399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new method for noninvasive quantification of valvular regurgitation based on conservation of momentum. In vitro validation.
    Cape EG; Skoufis EG; Weyman AE; Yoganathan AP; Levine RA
    Circulation; 1989 Jun; 79(6):1343-53. PubMed ID: 2720933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Doppler color flow mapping of simulated in vitro regurgitant jets: evaluation of the effects of orifice size and hemodynamic variables.
    Simpson IA; Valdes-Cruz LM; Sahn DJ; Murillo A; Tamura T; Chung KJ
    J Am Coll Cardiol; 1989 Apr; 13(5):1195-207. PubMed ID: 2647815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aortic valve morphology influences regurgitant volume in aortic regurgitation: in vitro evaluation.
    Grayburn PA; Eichhorn EJ; Eberhart RC; Bedotto JB; Brickner ME; Taylor AL
    Cardiovasc Res; 1991 Jan; 25(1):73-9. PubMed ID: 2054834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adjacent solid boundaries alter the size of regurgitant jets on Doppler color flow maps.
    Cape EG; Yoganathan AP; Weyman AE; Levine RA
    J Am Coll Cardiol; 1991 Apr; 17(5):1094-102. PubMed ID: 2007708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Velocity measurements within confined turbulent jets: application to cardiovalvular regurgitation.
    Liu H; Winoto SH; Shah DA
    Ann Biomed Eng; 1997; 25(6):939-48. PubMed ID: 9395040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observer variability in the quantitation of Doppler color flow jet areas for mitral and aortic regurgitation.
    Smith MD; Grayburn PA; Spain MG; DeMaria AN
    J Am Coll Cardiol; 1988 Mar; 11(3):579-84. PubMed ID: 3343461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new theoretical model for noninvasive quantification of mitral regurgitation.
    Cape EG; Yoganathan AP; Levine RA
    J Biomech; 1990; 23(1):27-33. PubMed ID: 2307689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of impinging wall jet on color Doppler quantification of mitral regurgitation.
    Chen CG; Thomas JD; Anconina J; Harrigan P; Mueller L; Picard MH; Levine RA; Weyman AE
    Circulation; 1991 Aug; 84(2):712-20. PubMed ID: 1860216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.