These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 10807990)
1. Mechanical effects of continuous passive motion on the lumbar spine in seating. van Deursen DL; Lengsfeld M; Snijders CJ; Evers JJ; Goossens RH J Biomech; 2000 Jun; 33(6):695-9. PubMed ID: 10807990 [TBL] [Abstract][Full Text] [Related]
2. Do flexion/extension postures affect the in vivo passive lumbar spine response to applied axial twist moments? Drake JD; Callaghan JP Clin Biomech (Bristol); 2008 Jun; 23(5):510-9. PubMed ID: 18234402 [TBL] [Abstract][Full Text] [Related]
3. Influence of spinal disc translational stiffness on the lumbar spinal loads, ligament forces and trunk muscle forces during upper body inclination. Arshad R; Zander T; Bashkuev M; Schmidt H Med Eng Phys; 2017 Aug; 46():54-62. PubMed ID: 28666589 [TBL] [Abstract][Full Text] [Related]
4. A model of spine, ribcage and pelvic responses to a specific lumbar manipulative force in relaxed subjects. Lee M; Kelly DW; Steven GP J Biomech; 1995 Nov; 28(11):1403-8. PubMed ID: 8522552 [TBL] [Abstract][Full Text] [Related]
5. Effects of lumbo-pelvic rhythm on trunk muscle forces and disc loads during forward flexion: A combined musculoskeletal and finite element simulation study. Liu T; Khalaf K; Adeeb S; El-Rich M J Biomech; 2019 Jan; 82():116-123. PubMed ID: 30389260 [TBL] [Abstract][Full Text] [Related]
6. Internal spinal fixator stiffness has only a minor influence on stresses in the adjacent discs. Rohlmann A; Calisse J; Bergmann G; Weber U Spine (Phila Pa 1976); 1999 Jun; 24(12):1192-5; discussion 1195-6. PubMed ID: 10382244 [TBL] [Abstract][Full Text] [Related]
7. Patient-specific spine models. Part 1: Finite element analysis of the lumbar intervertebral disc--a material sensitivity study. Fagan MJ; Julian S; Siddall DJ; Mohsen AM Proc Inst Mech Eng H; 2002; 216(5):299-314. PubMed ID: 12365788 [TBL] [Abstract][Full Text] [Related]
8. A multibody modelling approach to determine load sharing between passive elements of the lumbar spine. Abouhossein A; Weisse B; Ferguson SJ Comput Methods Biomech Biomed Engin; 2011 Jun; 14(6):527-37. PubMed ID: 21128134 [TBL] [Abstract][Full Text] [Related]
9. Prediction of the modal characteristics of the human spine at resonant frequency using finite element models. Guo LX; Teo EC Proc Inst Mech Eng H; 2005 Jul; 219(4):277-84. PubMed ID: 16050218 [TBL] [Abstract][Full Text] [Related]
10. Differences in lumbar spine load due to posture and upper limb external load. Kamińska J; Roman-Liu D; Zagrajek T; Borkowski P Int J Occup Saf Ergon; 2010; 16(4):421-30. PubMed ID: 21144261 [TBL] [Abstract][Full Text] [Related]
11. Effects of posture and structure on three-dimensional coupled rotations in the lumbar spine. A biomechanical analysis. Cholewicki J; Crisco JJ; Oxland TR; Yamamoto I; Panjabi MM Spine (Phila Pa 1976); 1996 Nov; 21(21):2421-8. PubMed ID: 8923626 [TBL] [Abstract][Full Text] [Related]
12. Intervertebral motion during vibration. Pope MH; Kaigle AM; Magnusson M; Broman H; Hansson T Proc Inst Mech Eng H; 1991; 205(1):39-44. PubMed ID: 1670074 [TBL] [Abstract][Full Text] [Related]
13. Representation of passive spinal element contributions to in vitro flexion-extension using a polynomial model: illustration using the porcine lumbar spine. Dickey JP; Gillespie KA J Biomech; 2003 Jun; 36(6):883-8. PubMed ID: 12742456 [TBL] [Abstract][Full Text] [Related]
14. Limitations of the standard linear solid model of intervertebral discs subject to prolonged loading and low-frequency vibration in axial compression. Li S; Patwardhan AG; Amirouche FM; Havey R; Meade KP J Biomech; 1995 Jul; 28(7):779-90. PubMed ID: 7657676 [TBL] [Abstract][Full Text] [Related]
15. Effects of Axial Torsion on Disc Height Distribution: An In Vivo Study. Espinoza Orías AA; Mammoser NM; Triano JJ; An HS; Andersson GB; Inoue N J Manipulative Physiol Ther; 2016 May; 39(4):294-303. PubMed ID: 27059249 [TBL] [Abstract][Full Text] [Related]
16. Stress analysis of a canine spinal motion segment using the finite element technique. Lim TH; Goel VK; Weinstein JN; Kong W J Biomech; 1994 Oct; 27(10):1259-69. PubMed ID: 7962013 [TBL] [Abstract][Full Text] [Related]
17. Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load-displacement curves. Panjabi MM; Oxland TR; Yamamoto I; Crisco JJ J Bone Joint Surg Am; 1994 Mar; 76(3):413-24. PubMed ID: 8126047 [TBL] [Abstract][Full Text] [Related]
18. A forward dynamics simulation of human lumbar spine flexion predicting the load sharing of intervertebral discs, ligaments, and muscles. Rupp TK; Ehlers W; Karajan N; Günther M; Schmitt S Biomech Model Mechanobiol; 2015 Oct; 14(5):1081-105. PubMed ID: 25653134 [TBL] [Abstract][Full Text] [Related]
19. Dynamic, six-axis stiffness matrix characteristics of the intact intervertebral disc and a disc replacement. Holsgrove TP; Gill HS; Miles AW; Gheduzzi S Proc Inst Mech Eng H; 2015 Nov; 229(11):769-77. PubMed ID: 26503838 [TBL] [Abstract][Full Text] [Related]
20. The influence of slouching and lumbar support on iliolumbar ligaments, intervertebral discs and sacroiliac joints. Snijders CJ; Hermans PF; Niesing R; Spoor CW; Stoeckart R Clin Biomech (Bristol); 2004 May; 19(4):323-9. PubMed ID: 15109750 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]