These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 10807999)

  • 1. A continuous pure moment loading apparatus for biomechanical testing of multi-segment spine specimens.
    Lysack JT; Dickey JP; Dumas GA; Yen D
    J Biomech; 2000 Jun; 33(6):765-70. PubMed ID: 10807999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization and prediction of rate-dependent flexibility in lumbar spine biomechanics at room and body temperature.
    Stolworthy DK; Zirbel SA; Howell LL; Samuels M; Bowden AE
    Spine J; 2014 May; 14(5):789-98. PubMed ID: 24290312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and validation of a novel Cartesian biomechanical testing system with coordinated 6DOF real-time load control: application to the lumbar spine (L1-S, L4-L5).
    Kelly BP; Bennett CR
    J Biomech; 2013 Jul; 46(11):1948-54. PubMed ID: 23764173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical role of lumbar spine ligaments in flexion and extension: determination using a parallel linkage robot and a porcine model.
    Gillespie KA; Dickey JP
    Spine (Phila Pa 1976); 2004 Jun; 29(11):1208-16. PubMed ID: 15167660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can extra-articular strains be used to measure facet contact forces in the lumbar spine? An in-vitro biomechanical study.
    Zhu QA; Park YB; Sjovold SG; Niosi CA; Wilson DC; Cripton PA; Oxland TR
    Proc Inst Mech Eng H; 2008 Feb; 222(2):171-84. PubMed ID: 18441753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of compressive axial preload on the flexibility of the thoracolumbar spine.
    Tawackoli W; Marco R; Liebschner MA
    Spine (Phila Pa 1976); 2004 May; 29(9):988-93. PubMed ID: 15105669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Biomechanical design of load simulation in multiple spinal segments].
    Schopphoff E; Phoa T; Birnbaum K
    Biomed Tech (Berl); 2003; 48(7-8):213-6. PubMed ID: 12910862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A method for studying the biomechanical load response of the (in vitro) lumbar spine under dynamic flexion-shear loads.
    Osvalder AL; Neumann P; Lövsund P; Nordwall A
    J Biomech; 1993 Oct; 26(10):1227-36. PubMed ID: 8253827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical properties of threaded inserts for lumbar interbody spinal fusion.
    Tencer AF; Hampton D; Eddy S
    Spine (Phila Pa 1976); 1995 Nov; 20(22):2408-14. PubMed ID: 8578391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental measurement of ligament force, facet force, and segment motion in the human lumbar spine.
    Schendel MJ; Wood KB; Buttermann GR; Lewis JL; Ogilvie JW
    J Biomech; 1993; 26(4-5):427-38. PubMed ID: 8478347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lumbar facet joint and intervertebral disc loading during simulated pelvic obliquity.
    Popovich JM; Welcher JB; Hedman TP; Tawackoli W; Anand N; Chen TC; Kulig K
    Spine J; 2013 Nov; 13(11):1581-9. PubMed ID: 23706384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radio-translucent 3-axis mechanical testing rig for the spine in micro-CT.
    Si-Hoe KM; Teoh SH; Teo J
    J Biomech Eng; 2006 Dec; 128(6):957-64. PubMed ID: 17154698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load-displacement curves.
    Panjabi MM; Oxland TR; Yamamoto I; Crisco JJ
    J Bone Joint Surg Am; 1994 Mar; 76(3):413-24. PubMed ID: 8126047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The strain distribution in the lumbar anterior longitudinal ligament is affected by the loading condition and bony features: An in vitro full-field analysis.
    Palanca M; Ruspi ML; Cristofolini L; Liebsch C; Villa T; Brayda-Bruno M; Galbusera F; Wilke HJ; La Barbera L
    PLoS One; 2020; 15(1):e0227210. PubMed ID: 31935225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stress analysis of a canine spinal motion segment using the finite element technique.
    Lim TH; Goel VK; Weinstein JN; Kong W
    J Biomech; 1994 Oct; 27(10):1259-69. PubMed ID: 7962013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transforaminal lumbar interbody fusion: the effect of various instrumentation techniques on the flexibility of the lumbar spine.
    Harris BM; Hilibrand AS; Savas PE; Pellegrino A; Vaccaro AR; Siegler S; Albert TJ
    Spine (Phila Pa 1976); 2004 Feb; 29(4):E65-70. PubMed ID: 15094547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Load-displacement properties of the normal and injured lower cervical spine in vitro.
    Richter M; Wilke HJ; Kluger P; Claes L; Puhl W
    Eur Spine J; 2000 Apr; 9(2):104-8. PubMed ID: 10823425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of tensioning the lumbar fasciae on segmental stiffness during flexion and extension: Young Investigator Award winner.
    Barker PJ; Guggenheimer KT; Grkovic I; Briggs CA; Jones DC; Thomas CD; Hodges PW
    Spine (Phila Pa 1976); 2006 Feb; 31(4):397-405. PubMed ID: 16481949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A forward dynamics simulation of human lumbar spine flexion predicting the load sharing of intervertebral discs, ligaments, and muscles.
    Rupp TK; Ehlers W; Karajan N; Günther M; Schmitt S
    Biomech Model Mechanobiol; 2015 Oct; 14(5):1081-105. PubMed ID: 25653134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphologic changes in the lumbar intervertebral foramen due to flexion-extension, lateral bending, and axial rotation: an in vitro anatomic and biomechanical study.
    Fujiwara A; An HS; Lim TH; Haughton VM
    Spine (Phila Pa 1976); 2001 Apr; 26(8):876-82. PubMed ID: 11317109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.