These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 10808530)

  • 21. Ion gradients and contractility in skeletal muscle: the role of active Na+, K+ transport.
    Nielsen OB; Overgaard K
    Acta Physiol Scand; 1996 Mar; 156(3):247-56. PubMed ID: 8729684
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Na,K-ATPase α2 activity in mammalian skeletal muscle T-tubules is acutely stimulated by extracellular K+.
    DiFranco M; Hakimjavadi H; Lingrel JB; Heiny JA
    J Gen Physiol; 2015 Oct; 146(4):281-94. PubMed ID: 26371210
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Effect of the pH on the membrane resting potentials of the muscle fibers in the frog].
    Volkovv EM
    Fiziol Zh SSSR Im I M Sechenova; 1983 Sep; 69(9):1170-5. PubMed ID: 6641996
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of the T-system and the Na+-K+ pump on fatigue development in phasic skeletal muscle.
    Gonzalez-Serratos H; Chang R; Rozycka M; Blaustein M; Dedeyne PG
    J Muscle Res Cell Motil; 2004; 25(8):598-600. PubMed ID: 16118851
    [No Abstract]   [Full Text] [Related]  

  • 25. Hypotonic stimulation of the Na+ active transport in frog skeletal muscle: role of the cytoskeleton.
    Venosa RA
    J Physiol; 2003 Apr; 548(Pt 2):451-9. PubMed ID: 12598593
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [The effect of membrane-transport inhibitors on the vacuolization of skeletal muscle fibers induced by glycerin removal from them].
    Krolenko SA; Adamian SIa
    Tsitologiia; 1996; 38(7):751-7. PubMed ID: 9005648
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of separate K+ and Cl- channels and of Na+/Cl- cotransport in volume regulation in Ehrlich cells.
    Hoffmann EK
    Fed Proc; 1985 Jun; 44(9):2513-9. PubMed ID: 2581818
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intracellular and extracellular action potentials in frog muscle fibre upon blocking the potassium conductivity.
    Radicheva N
    Acta Physiol Pharmacol Bulg; 1986; 12(2):35-9. PubMed ID: 2429496
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cs(+) causes a voltage-dependent block of inward K currents in resting skeletal muscle fibres.
    Gay LA; Stanfield PR
    Nature; 1977 May; 267(5607):169-70. PubMed ID: 16073434
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Further studies on Nivalin P-induced changes in muscle fiber membrane processes.
    Radicheva N; Mileva K; Stoyanova N; Georgieva B
    Methods Find Exp Clin Pharmacol; 1999; 21(1):5-10. PubMed ID: 10222440
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of reduced electrochemical Na+ gradient on contractility in skeletal muscle: role of the Na+-K+ pump.
    Overgaard K; Nielsen OB; Clausen T
    Pflugers Arch; 1997 Aug; 434(4):457-65. PubMed ID: 9211813
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The tubular vacuolation process in amphibian skeletal muscle.
    Fraser JA; Skepper JN; Hockaday AR; Huang CL
    J Muscle Res Cell Motil; 1998 Aug; 19(6):613-29. PubMed ID: 9742446
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Muscle K+, Na+, and Cl disturbances and Na+-K+ pump inactivation: implications for fatigue.
    McKenna MJ; Bangsbo J; Renaud JM
    J Appl Physiol (1985); 2008 Jan; 104(1):288-95. PubMed ID: 17962569
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of repetitive stimulation on cell volume and its relationship to membrane potential in amphibian skeletal muscle.
    Usher-Smith JA; Skepper JN; Fraser JA; Huang CL
    Pflugers Arch; 2006 May; 452(2):231-9. PubMed ID: 16404610
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evidence that the Na+-K+ leak/pump ratio contributes to the difference in endurance between fast- and slow-twitch muscles.
    Clausen T; Overgaard K; Nielsen OB
    Acta Physiol Scand; 2004 Feb; 180(2):209-16. PubMed ID: 14738479
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stretch- and stimulation frequency-induced changes in extracellular action potentials of muscle fibres during continuous activity.
    Mileva K; Vydevska M; Radicheva N
    J Muscle Res Cell Motil; 1998 Jan; 19(1):95-103. PubMed ID: 9477381
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Resting potential-dependent regulation of the voltage sensitivity of sodium channel gating in rat skeletal muscle in vivo.
    Filatov GN; Pinter MJ; Rich MM
    J Gen Physiol; 2005 Aug; 126(2):161-72. PubMed ID: 16043776
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cardiac glycosides inhibit detubulation in amphibian skeletal muscle fibres exposed to osmotic shock.
    Nik-Zainal S; Skepper JN; Hockaday A; Huang CL
    J Muscle Res Cell Motil; 1999 Jan; 20(1):45-53. PubMed ID: 10360233
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of ionic medium on carbacholine-induced membrane depolarization in lumbricus terrestris somatic muscle cells.
    Volkov EM; Nurullin LF
    Bull Exp Biol Med; 2002 Nov; 134(5):428-9. PubMed ID: 12802441
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The influence of intracellular lactate and H+ on cell volume in amphibian skeletal muscle.
    Usher-Smith JA; Fraser JA; Bailey PS; Griffin JL; Huang CL
    J Physiol; 2006 Jun; 573(Pt 3):799-818. PubMed ID: 16613877
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.