These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 10809015)

  • 1. A model study of cellular short-term memory produced by slowly inactivating potassium conductances.
    Delord B; Baraduc P; Costalat R; Burnod Y; Guigon E
    J Comput Neurosci; 2000; 8(3):251-73. PubMed ID: 10809015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium coding and adaptive temporal computation in cortical pyramidal neurons.
    Wang XJ
    J Neurophysiol; 1998 Mar; 79(3):1549-66. PubMed ID: 9497431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A variable-threshold motoneuron model that incorporates time- and voltage-dependent potassium and calcium conductances.
    Powers RK
    J Neurophysiol; 1993 Jul; 70(1):246-62. PubMed ID: 8395578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular short-term memory from a slow potassium conductance.
    Turrigiano GG; Marder E; Abbott LF
    J Neurophysiol; 1996 Feb; 75(2):963-6. PubMed ID: 8714669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Persistent activity and the single-cell frequency-current curve in a cortical network model.
    Brunel N
    Network; 2000 Nov; 11(4):261-80. PubMed ID: 11128167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct classes of pyramidal cells exhibit mutually exclusive firing patterns in hippocampal area CA3b.
    Hemond P; Epstein D; Boley A; Migliore M; Ascoli GA; Jaffe DB
    Hippocampus; 2008; 18(4):411-24. PubMed ID: 18189311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of an A-type K+ conductance in the back-propagation of action potentials in the dendrites of hippocampal pyramidal neurons.
    Migliore M; Hoffman DA; Magee JC; Johnston D
    J Comput Neurosci; 1999; 7(1):5-15. PubMed ID: 10481998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amplification and linearization of distal synaptic input to cortical pyramidal cells.
    Bernander O; Koch C; Douglas RJ
    J Neurophysiol; 1994 Dec; 72(6):2743-53. PubMed ID: 7897486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biophysical properties of the silent and activated rat sympathetic neuron following denervation.
    Sacchi O; Rossi ML; Canella R; Fesce R
    Neuroscience; 2005; 135(1):31-45. PubMed ID: 16084656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of firing patterns by two transient potassium currents: leading spike, latency, bistability.
    Meng X; Lu Q; Rinzel J
    J Comput Neurosci; 2011 Aug; 31(1):117-36. PubMed ID: 21181249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibitory control of somatodendritic interactions underlying action potentials in neocortical pyramidal neurons in vivo: an intracellular and computational study.
    Paré D; Lang EJ; Destexhe A
    Neuroscience; 1998 May; 84(2):377-402. PubMed ID: 9539211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The domain of neuronal firing on a plane of input current and conductance.
    Smirnova EY; Zaitsev AV; Kim KKh; Chizhov AV
    J Comput Neurosci; 2015 Oct; 39(2):217-33. PubMed ID: 26278407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibitory synaptic plasticity regulates pyramidal neuron spiking in the rodent hippocampus.
    Saraga F; Balena T; Wolansky T; Dickson CT; Woodin MA
    Neuroscience; 2008 Jul; 155(1):64-75. PubMed ID: 18562122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computer simulations of NMDA and non-NMDA receptor-mediated synaptic drive: sensory and supraspinal modulation of neurons and small networks.
    Tråvén HG; Brodin L; Lansner A; Ekeberg O; Wallén P; Grillner S
    J Neurophysiol; 1993 Aug; 70(2):695-709. PubMed ID: 8105036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of Ca2+-dependent cationic current in generating gamma frequency rhythmic bursts: modeling study.
    Aoyagi T; Kang Y; Terada N; Kaneko T; Fukai T
    Neuroscience; 2002; 115(4):1127-38. PubMed ID: 12453485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Voltage-gated potassium channels activated during action potentials in layer V neocortical pyramidal neurons.
    Kang J; Huguenard JR; Prince DA
    J Neurophysiol; 2000 Jan; 83(1):70-80. PubMed ID: 10634854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integration of synchronous synaptic input in CA1 pyramidal neuron depends on spatial and temporal distributions of the input.
    Tigerholm J; Migliore M; Fransén E
    Hippocampus; 2013 Jan; 23(1):87-99. PubMed ID: 22996230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic depolarization fields in the cerebral cortex.
    Roland PE
    Trends Neurosci; 2002 Apr; 25(4):183-90. PubMed ID: 11998686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BK potassium channels facilitate high-frequency firing and cause early spike frequency adaptation in rat CA1 hippocampal pyramidal cells.
    Gu N; Vervaeke K; Storm JF
    J Physiol; 2007 May; 580(Pt.3):859-82. PubMed ID: 17303637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biophysical characterization and functional consequences of a slowly inactivating potassium current in neostriatal neurons.
    Gabel LA; Nisenbaum ES
    J Neurophysiol; 1998 Apr; 79(4):1989-2002. PubMed ID: 9535963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.