These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 10809015)

  • 21. Synchrony is stubborn in feedforward cortical networks.
    Segev I
    Nat Neurosci; 2003 Jun; 6(6):543-4. PubMed ID: 12771956
    [No Abstract]   [Full Text] [Related]  

  • 22. Contribution of a slowly inactivating potassium current to the transition to firing of neostriatal spiny projection neurons.
    Nisenbaum ES; Xu ZC; Wilson CJ
    J Neurophysiol; 1994 Mar; 71(3):1174-89. PubMed ID: 8201411
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The discharge variability of neocortical neurons during high-conductance states.
    Rudolph M; Destexhe A
    Neuroscience; 2003; 119(3):855-73. PubMed ID: 12809706
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Background synaptic conductance and precision of EPSP-spike coupling at pyramidal cells.
    Zsiros V; Hestrin S
    J Neurophysiol; 2005 Jun; 93(6):3248-56. PubMed ID: 15716369
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Self-organization of memory activity through spike-timing-dependent plasticity.
    Kitano K; Câteau H; Fukai T
    Neuroreport; 2002 May; 13(6):795-8. PubMed ID: 11997689
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Conditional Bistability, a Generic Cellular Mnemonic Mechanism for Robust and Flexible Working Memory Computations.
    Rodriguez G; Sarazin M; Clemente A; Holden S; Paz JT; Delord B
    J Neurosci; 2018 May; 38(22):5209-5219. PubMed ID: 29712783
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Robust spatial working memory through homeostatic synaptic scaling in heterogeneous cortical networks.
    Renart A; Song P; Wang XJ
    Neuron; 2003 May; 38(3):473-85. PubMed ID: 12741993
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Physiological characterization of layer III non-pyramidal neurons in piriform (olfactory) cortex of rat.
    Protopapas AD; Bower JM
    Brain Res; 2000 May; 865(1):1-11. PubMed ID: 10814727
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex.
    Markram H; Lübke J; Frotscher M; Roth A; Sakmann B
    J Physiol; 1997 Apr; 500 ( Pt 2)(Pt 2):409-40. PubMed ID: 9147328
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dopamine modulates two potassium currents and inhibits the intrinsic firing properties of an identified motor neuron in a central pattern generator network.
    Kloppenburg P; Levini RM; Harris-Warrick RM
    J Neurophysiol; 1999 Jan; 81(1):29-38. PubMed ID: 9914264
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of axonal NaV1.6 sodium channels in action potential initiation of CA1 pyramidal neurons.
    Royeck M; Horstmann MT; Remy S; Reitze M; Yaari Y; Beck H
    J Neurophysiol; 2008 Oct; 100(4):2361-80. PubMed ID: 18650312
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sequential memory: a putative neural and synaptic dynamical mechanism.
    Deco G; Rolls ET
    J Cogn Neurosci; 2005 Feb; 17(2):294-307. PubMed ID: 15811241
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modulation of a slowly inactivating potassium current, I(D), by metabotropic glutamate receptor activation in cultured hippocampal pyramidal neurons.
    Wu RL; Barish ME
    J Neurosci; 1999 Aug; 19(16):6825-37. PubMed ID: 10436040
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamics of the CA3 pyramidal neuron autoassociative memory network in the hippocampus.
    Bennett MR; Gibson WG; Robinson J
    Philos Trans R Soc Lond B Biol Sci; 1994 Jan; 343(1304):167-87. PubMed ID: 8146234
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A-type and T-type currents interact to produce a novel spike latency-voltage relationship in cerebellar stellate cells.
    Molineux ML; Fernandez FR; Mehaffey WH; Turner RW
    J Neurosci; 2005 Nov; 25(47):10863-73. PubMed ID: 16306399
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reduced K+ channel inactivation, spike broadening, and after-hyperpolarization in Kvbeta1.1-deficient mice with impaired learning.
    Giese KP; Storm JF; Reuter D; Fedorov NB; Shao LR; Leicher T; Pongs O; Silva AJ
    Learn Mem; 1998; 5(4-5):257-73. PubMed ID: 10454353
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Resting and active properties of pyramidal neurons in subiculum and CA1 of rat hippocampus.
    Staff NP; Jung HY; Thiagarajan T; Yao M; Spruston N
    J Neurophysiol; 2000 Nov; 84(5):2398-408. PubMed ID: 11067982
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-conductance states and A-type K+ channels are potential regulators of the conductance-current balance triggered by HCN channels.
    Mishra P; Narayanan R
    J Neurophysiol; 2015 Jan; 113(1):23-43. PubMed ID: 25231614
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neocortical pyramidal cells: a model with dendritic calcium conductance reproduces repetitive firing and epileptic behavior.
    Traub RD
    Brain Res; 1979 Sep; 173(2):243-57. PubMed ID: 226213
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intrinsic cellular currents and the temporal precision of EPSP-action potential coupling in CA1 pyramidal cells.
    Axmacher N; Miles R
    J Physiol; 2004 Mar; 555(Pt 3):713-25. PubMed ID: 14724200
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.