These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 10809774)
1. The conformational activation of antithrombin. A 2.85-A structure of a fluorescein derivative reveals an electrostatic link between the hinge and heparin binding regions. Huntington JA; McCoy A; Belzar KJ; Pei XY; Gettins PG; Carrell RW J Biol Chem; 2000 May; 275(20):15377-83. PubMed ID: 10809774 [TBL] [Abstract][Full Text] [Related]
2. The antithrombin P1 residue is important for target proteinase specificity but not for heparin activation of the serpin. Characterization of P1 antithrombin variants with altered proteinase specificity but normal heparin activation. Chuang YJ; Swanson R; Raja SM; Bock SC; Olson ST Biochemistry; 2001 Jun; 40(22):6670-9. PubMed ID: 11380262 [TBL] [Abstract][Full Text] [Related]
3. Conformational equilibrium of the reactive center loop of antithrombin examined by steady state and time-resolved fluorescence measurements: consequences for the mechanism of factor Xa inhibition by antithrombin-heparin complexes. Futamura A; Beechem JM; Gettins PG Biochemistry; 2001 Jun; 40(22):6680-7. PubMed ID: 11380263 [TBL] [Abstract][Full Text] [Related]
4. The influence of hinge region residue Glu-381 on antithrombin allostery and metastability. Johnson DJ; Huntington JA J Biol Chem; 2004 Feb; 279(6):4913-21. PubMed ID: 14623882 [TBL] [Abstract][Full Text] [Related]
5. Conformational changes in serpins: II. The mechanism of activation of antithrombin by heparin. Whisstock JC; Pike RN; Jin L; Skinner R; Pei XY; Carrell RW; Lesk AM J Mol Biol; 2000 Sep; 301(5):1287-305. PubMed ID: 10966821 [TBL] [Abstract][Full Text] [Related]
6. Heparin enhances the specificity of antithrombin for thrombin and factor Xa independent of the reactive center loop sequence. Evidence for an exosite determinant of factor Xa specificity in heparin-activated antithrombin. Chuang YJ; Swanson R; Raja SM; Olson ST J Biol Chem; 2001 May; 276(18):14961-71. PubMed ID: 11278930 [TBL] [Abstract][Full Text] [Related]
7. Importance of lysine 125 for heparin binding and activation of antithrombin. Schedin-Weiss S; Desai UR; Bock SC; Gettins PG; Olson ST; Björk I Biochemistry; 2002 Apr; 41(15):4779-88. PubMed ID: 11939772 [TBL] [Abstract][Full Text] [Related]
8. Molecular determinants of the mechanism underlying acceleration of the interaction between antithrombin and factor Xa by heparin pentasaccharide. Quinsey NS; Whisstock JC; Le Bonniec B; Louvain V; Bottomley SP; Pike RN J Biol Chem; 2002 May; 277(18):15971-8. PubMed ID: 11854268 [TBL] [Abstract][Full Text] [Related]
9. Conformational activation of antithrombin by heparin involves an altered exosite interaction with protease. Izaguirre G; Aguila S; Qi L; Swanson R; Roth R; Rezaie AR; Gettins PG; Olson ST J Biol Chem; 2014 Dec; 289(49):34049-64. PubMed ID: 25331949 [TBL] [Abstract][Full Text] [Related]
10. The role of Arg46 and Arg47 of antithrombin in heparin binding. Arocas V; Bock SC; Olson ST; Björk I Biochemistry; 1999 Aug; 38(31):10196-204. PubMed ID: 10433728 [TBL] [Abstract][Full Text] [Related]
11. The critical role of hinge-region expulsion in the induced-fit heparin binding mechanism of antithrombin. Langdown J; Belzar KJ; Savory WJ; Baglin TP; Huntington JA J Mol Biol; 2009 Mar; 386(5):1278-89. PubMed ID: 19452598 [TBL] [Abstract][Full Text] [Related]
12. Crystal structure of antithrombin in a heparin-bound intermediate state. Johnson DJ; Huntington JA Biochemistry; 2003 Jul; 42(29):8712-9. PubMed ID: 12873131 [TBL] [Abstract][Full Text] [Related]
13. Elimination of P1 arginine 393 interaction with underlying glutamic acid 255 partially activates antithrombin III for thrombin inhibition but not factor Xa inhibition. Jairajpuri MA; Lu A; Bock SC J Biol Chem; 2002 Jul; 277(27):24460-5. PubMed ID: 11971909 [TBL] [Abstract][Full Text] [Related]
14. Kinetic evidence that allosteric activation of antithrombin by heparin is mediated by two sequential conformational changes. Schedin-Weiss S; Richard B; Olson ST Arch Biochem Biophys; 2010 Dec; 504(2):169-76. PubMed ID: 20816747 [TBL] [Abstract][Full Text] [Related]
15. Conformational conversion of antithrombin to a fully activated substrate of factor Xa without need for heparin. Huntington JA; Gettins PG Biochemistry; 1998 Mar; 37(10):3272-7. PubMed ID: 9521646 [TBL] [Abstract][Full Text] [Related]
16. Helix D elongation and allosteric activation of antithrombin. Belzar KJ; Zhou A; Carrell RW; Gettins PG; Huntington JA J Biol Chem; 2002 Mar; 277(10):8551-8. PubMed ID: 11741963 [TBL] [Abstract][Full Text] [Related]
17. Allosteric activation of antithrombin critically depends upon hinge region extension. Langdown J; Johnson DJ; Baglin TP; Huntington JA J Biol Chem; 2004 Nov; 279(45):47288-97. PubMed ID: 15326167 [TBL] [Abstract][Full Text] [Related]
18. Critical role of the linker region between helix D and strand 2A in heparin activation of antithrombin. Meagher JL; Olson ST; Gettins PG J Biol Chem; 2000 Jan; 275(4):2698-704. PubMed ID: 10644732 [TBL] [Abstract][Full Text] [Related]
19. Role of arginine 129 in heparin binding and activation of antithrombin. Desai U; Swanson R; Bock SC; Bjork I; Olson ST J Biol Chem; 2000 Jun; 275(25):18976-84. PubMed ID: 10764763 [TBL] [Abstract][Full Text] [Related]
20. Mechanism of heparin activation of antithrombin. Evidence for reactive center loop preinsertion with expulsion upon heparin binding. Huntington JA; Olson ST; Fan B; Gettins PG Biochemistry; 1996 Jul; 35(26):8495-503. PubMed ID: 8679610 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]