BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 10809786)

  • 1. The Yap1p-dependent induction of glutathione synthesis in heat shock response of Saccharomyces cerevisiae.
    Sugiyama K; Izawa S; Inoue Y
    J Biol Chem; 2000 May; 275(20):15535-40. PubMed ID: 10809786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of glutathione in heat-shock-induced cell death of Saccharomyces cerevisiae.
    Sugiyama K; Kawamura A; Izawa S; Inoue Y
    Biochem J; 2000 Nov; 352 Pt 1(Pt 1):71-8. PubMed ID: 11062059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymatic synthesis of glutathione using engineered Saccharomyces cerevisiae.
    Chen JL; Xie L; Cai JJ; Yang CS; Duan XH
    Biotechnol Lett; 2013 Aug; 35(8):1259-64. PubMed ID: 23543324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutathione regulates the expression of gamma-glutamylcysteine synthetase via the Met4 transcription factor.
    Wheeler GL; Quinn KA; Perrone G; Dawes IW; Grant CM
    Mol Microbiol; 2002 Oct; 46(2):545-56. PubMed ID: 12406228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of glutathione in the oxidative stress response in the fungal pathogen Candida glabrata.
    Gutiérrez-Escobedo G; Orta-Zavalza E; Castaño I; De Las Peñas A
    Curr Genet; 2013 Aug; 59(3):91-106. PubMed ID: 23455613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of Yap1p and Skn7p-mediated oxidative stress response in the defence of Saccharomyces cerevisiae against singlet oxygen.
    Brombacher K; Fischer BB; Rüfenacht K; Eggen RI
    Yeast; 2006 Jul; 23(10):741-50. PubMed ID: 16862604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of the YAP1 and YAP2 genes in the regulation of the adaptive oxidative stress responses of Saccharomyces cerevisiae.
    Stephen DW; Rivers SL; Jamieson DJ
    Mol Microbiol; 1995 May; 16(3):415-23. PubMed ID: 7565103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupling of the transcriptional regulation of glutathione biosynthesis to the availability of glutathione and methionine via the Met4 and Yap1 transcription factors.
    Wheeler GL; Trotter EW; Dawes IW; Grant CM
    J Biol Chem; 2003 Dec; 278(50):49920-8. PubMed ID: 14514673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glutathione synthetase is dispensable for growth under both normal and oxidative stress conditions in the yeast Saccharomyces cerevisiae due to an accumulation of the dipeptide gamma-glutamylcysteine.
    Grant CM; MacIver FH; Dawes IW
    Mol Biol Cell; 1997 Sep; 8(9):1699-707. PubMed ID: 9307967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arsenic toxicity and its mitigation in ectomycorrhizal fungus Hebeloma cylindrosporum through glutathione biosynthesis.
    Khullar S; Reddy MS
    Chemosphere; 2020 Feb; 240():124914. PubMed ID: 31557642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of novel Yap1p and Skn7p binding sites involved in the oxidative stress response of Saccharomyces cerevisiae.
    He XJ; Fassler JS
    Mol Microbiol; 2005 Dec; 58(5):1454-67. PubMed ID: 16313629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cadmium and arsenic responses in the ectomycorrhizal fungus Laccaria bicolor: glutathione metabolism and its role in metal(loid) homeostasis.
    Khullar S; Sudhakara Reddy M
    Environ Microbiol Rep; 2019 Apr; 11(2):53-61. PubMed ID: 30411517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidant regulation of the Saccharomyces cerevisiae GSH1 gene.
    Dormer UH; Westwater J; Stephen DW; Jamieson DJ
    Biochim Biophys Acta; 2002 Jun; 1576(1-2):23-9. PubMed ID: 12031480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amino acid-dependent regulation of the Saccharomyces cerevisiae GSH1 gene by hydrogen peroxide.
    Stephen DW; Jamieson DJ
    Mol Microbiol; 1997 Jan; 23(2):203-10. PubMed ID: 9044254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidized glutathione fermentation using Saccharomyces cerevisiae engineered for glutathione metabolism.
    Kiriyama K; Hara KY; Kondo A
    Appl Microbiol Biotechnol; 2013 Aug; 97(16):7399-404. PubMed ID: 23820559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional identification of glutamate cysteine ligase and glutathione synthetase in the marine yeast Rhodosporidium diobovatum.
    Kong M; Wang F; Tian L; Tang H; Zhang L
    Naturwissenschaften; 2017 Dec; 105(1-2):4. PubMed ID: 29247264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential targeting of GSH1 and GSH2 is achieved by multiple transcription initiation: implications for the compartmentation of glutathione biosynthesis in the Brassicaceae.
    Wachter A; Wolf S; Steininger H; Bogs J; Rausch T
    Plant J; 2005 Jan; 41(1):15-30. PubMed ID: 15610346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Cloning of the GSH1 and GSH2 genes complementing the defective biosynthesis of glutathione in the methylotrophic yeast Hansenula polymorpha].
    Ubiĭvovk VM; Nazarko TIu; Stasyk EG; Sibirnyĭ AA
    Mikrobiologiia; 2002; 71(6):829-35. PubMed ID: 12526206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. YBP1 and its homologue YBP2/YBH1 influence oxidative-stress tolerance by nonidentical mechanisms in Saccharomyces cerevisiae.
    Gulshan K; Rovinsky SA; Moye-Rowley WS
    Eukaryot Cell; 2004 Apr; 3(2):318-30. PubMed ID: 15075262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth temperature downshift induces antioxidant response in Saccharomyces cerevisiae.
    Zhang L; Onda K; Imai R; Fukuda R; Horiuchi H; Ohta A
    Biochem Biophys Res Commun; 2003 Jul; 307(2):308-14. PubMed ID: 12859956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.