These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 10810010)

  • 1. Classification of spatial textures in benign and cancerous glandular tissues by stereology and stochastic geometry using artificial neural networks.
    Mattfeldt T; Gottfried H; Schmidt V; Kestler HA
    J Microsc; 2000 May; 198(Pt 2):143-58. PubMed ID: 10810010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Centred contact density functions for the statistical analysis of random sets. A stereological study on benign and malignant glandular tissue using image analysis.
    Mattfeldt T; Schmidt V; Reepschläger D; Rose C; Frey H
    J Microsc; 1996 Aug; 183(Pt 2):158-69. PubMed ID: 8805827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of prostatic cancer progression after radical prostatectomy using artificial neural networks: a feasibility study.
    Mattfeldt T; Kestler HA; Hautmann R; Gottfried HW
    BJU Int; 1999 Aug; 84(3):316-23. PubMed ID: 10468729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Classification of prostatic carcinoma with artificial neural networks using comparative genomic hybridization and quantitative stereological data.
    Mattfeldt T; Gottfried HW; Wolter H; Schmidt V; Kestler HA; Mayer J
    Pathol Res Pract; 2003; 199(12):773-84. PubMed ID: 14989489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classification of incidental carcinoma of the prostate using learning vector quantization and support vector machines.
    Mattfeldt T; Trijic D; Gottfried HW; Kestler HA
    Cell Oncol; 2004; 26(1-2):45-55. PubMed ID: 15371656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of postoperative prostatic cancer stage on the basis of systematic biopsies using two types of artificial neural networks.
    Mattfeldt T; Kestler HA; Hautmann R; Gottfried HW
    Eur Urol; 2001 May; 39(5):530-6; discussion 537. PubMed ID: 11464033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of the learning vector quantizer to the classification of breast lesions.
    Markopoulos C; Karakitsos P; Botsoli-Stergiou E; Pouliakis A; Ioakim-Liossi A; Kyrkou K; Gogas J
    Anal Quant Cytol Histol; 1997 Oct; 19(5):453-60. PubMed ID: 9349906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Second-order stereology of benign and malignant alterations of the human mammary gland.
    Mattfeldt T; Frey H; Rose C
    J Microsc; 1993 Aug; 171(Pt 2):143-51. PubMed ID: 8411140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Incidental carcinoma of the prostate: clinicopathological, stereological and immunohistochemical findings studied with logistic regression and self-organizing feature maps.
    Mattfeldt T; Trijic D; Gotffried HW; Kestler HA
    BJU Int; 2004 Feb; 93(3):284-90. PubMed ID: 14764124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. More advantages in detecting bone and soft tissue metastases from prostate cancer using
    Pianou NK; Stavrou PZ; Vlontzou E; Rondogianni P; Exarhos DN; Datseris IE
    Hell J Nucl Med; 2019; 22(1):6-9. PubMed ID: 30843003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Three-dimensional spatial texture of adenocarcinoma of the prostate by a combination of stereology and digital image analysis].
    Mattfeldt T; Vogel U; Gottfried HW
    Verh Dtsch Ges Pathol; 1993; 77():73-7. PubMed ID: 7511306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computerized classification of malignant and benign microcalcifications on mammograms: texture analysis using an artificial neural network.
    Chan HP; Sahiner B; Petrick N; Helvie MA; Lam KL; Adler DD; Goodsitt MM
    Phys Med Biol; 1997 Mar; 42(3):549-67. PubMed ID: 9080535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mammographic masses characterization based on localized texture and dataset fractal analysis using linear, neural and support vector machine classifiers.
    Mavroforakis ME; Georgiou HV; Dimitropoulos N; Cavouras D; Theodoridis S
    Artif Intell Med; 2006 Jun; 37(2):145-62. PubMed ID: 16716579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of bladder outlet obstruction in men with lower urinary tract symptoms using artificial neural networks.
    Sonke GS; Heskes T; Verbeek AL; de la Rosette JJ; Kiemeney LA
    J Urol; 2000 Jan; 163(1):300-5. PubMed ID: 10604380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of neural networks to the classification of pancreatic intraductal proliferative lesions.
    Okoń K; Tomaszewska R; Nowak K; Stachura J
    Anal Cell Pathol; 2001; 23(3-4):129-36. PubMed ID: 12082293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of artificial neural networks for the classification of liver lesions by image texture parameters.
    Sujana H; Swarnamani S; Suresh S
    Ultrasound Med Biol; 1996; 22(9):1177-81. PubMed ID: 9123642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Back propagation neural network in the discrimination of benign from malignant lower urinary tract lesions.
    Pantazopoulos D; Karakitsos P; Iokim-Liossi A; Pouliakis A; Botsoli-Stergiou E; Dimopoulos C
    J Urol; 1998 May; 159(5):1619-23. PubMed ID: 9554366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasound tissue characterization of breast biopsy specimens: expanded study.
    Mortensen CL; Edmonds PD; Gorfu Y; Hill JR; Jensen JF; Schattner P; Shifrin LA; Valdes AD; Jeffrey SS; Esserman LJ
    Ultrason Imaging; 1996 Jul; 18(3):215-30. PubMed ID: 9123674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Image analysis and multi-layer perceptron artificial neural networks for the discrimination between benign and malignant endometrial lesions.
    Makris GM; Pouliakis A; Siristatidis C; Margari N; Terzakis E; Koureas N; Pergialiotis V; Papantoniou N; Karakitsos P
    Diagn Cytopathol; 2017 Mar; 45(3):202-211. PubMed ID: 28160459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Classification of in vivo 1H MR spectra from breast tissue using artificial neural networks.
    Bakken IJ; Axelson D; Kvistad KA; Gribbestad IS
    Anticancer Res; 2001; 21(2B):1481-5. PubMed ID: 11396236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.