BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 10810187)

  • 1. Generation of transmembrane electrical potential during NADH oxidation via the external pathway and the fatty acid uncoupling effect after transient opening of the Ca2+-dependent cyclosporin A-sensitive pore in liver mitochondria.
    Bodrova ME; Dedukhova VI; Mokhova EN
    Biochemistry (Mosc); 2000 Apr; 65(4):477-84. PubMed ID: 10810187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [The protective effect of cyclosporine A, carnitine, and Mg(2+) with ADP during calcium(2+)-dependent permeabilization of mitochondria by fatty acids and activation of NADH oxidation by an external pathway].
    Starkov AA; Markova OV; Mokhova EN; Arrigoni-Martelli E; Battelli D; Bobyleva VA
    Biokhimiia; 1993 Aug; 58(8):1266-75. PubMed ID: 8399776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fatty acid-induced Ca(2+)-dependent uncoupling and activation of external pathway of NADH oxidation are coupled to cyclosporin A-sensitive mitochondrial permeability transition.
    Starkov AA; Markova OV; Mokhova EN; Arrigoni-Martelli E; Bobyleva VA
    Biochem Mol Biol Int; 1994 Apr; 32(6):1147-55. PubMed ID: 8061632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prooxidants open both the mitochondrial permeability transition pore and a low-conductance channel in the inner mitochondrial membrane.
    Kushnareva YE; Sokolove PM
    Arch Biochem Biophys; 2000 Apr; 376(2):377-88. PubMed ID: 10775426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclosporin A-sensitive decrease in the transmembrane potential across the inner membrane of liver mitochondria induced by low concentrations of fatty acids and Ca2+.
    Bodrova ME; Brailovskaya IV; Efron GI; Starkov AA; Mokhova EN
    Biochemistry (Mosc); 2003 Apr; 68(4):391-8. PubMed ID: 12765520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Porin and cytochrome oxidase containing contact sites involved in the oxidation of cytosolic NADH.
    La Piana G; Marzulli D; Gorgoglione V; Lofrumento NE
    Arch Biochem Biophys; 2005 Apr; 436(1):91-100. PubMed ID: 15752713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytochrome c potentiates fatty acid-induced cyclosporin A-sensitive permeability transition in liver mitochondria.
    Amerkhanov ZG; Mokhova EN
    Biochemistry (Mosc); 1997 Dec; 62(12):1429-34. PubMed ID: 9481876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induction of Ca2+-dependent cyclosporin A-insensitive nonspecific permeability of the inner membrane of liver mitochondria and cytochrome c release by α,ω-hexadecanedioic acid in media of varying ionic strength.
    Dubinin MV; Vedernikov AA; Khoroshavina EI; Samartsev VN
    Biochemistry (Mosc); 2014 Jun; 79(6):571-6. PubMed ID: 25100016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biphasic oxidation of mitochondrial NAD(P)H.
    Lemeshko VV
    Biochem Biophys Res Commun; 2002 Feb; 291(1):170-5. PubMed ID: 11829479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vanadium compounds induced mitochondria permeability transition pore (PTP) opening related to oxidative stress.
    Zhao Y; Ye L; Liu H; Xia Q; Zhang Y; Yang X; Wang K
    J Inorg Biochem; 2010 Apr; 104(4):371-8. PubMed ID: 20015552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Palmitic acid opens a novel cyclosporin A-insensitive pore in the inner mitochondrial membrane.
    Sultan A; Sokolove PM
    Arch Biochem Biophys; 2001 Feb; 386(1):37-51. PubMed ID: 11360999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Menadione induces a low conductance state of the mitochondrial inner membrane sensitive to bongkrekic acid.
    Toninello A; Salvi M; Schweizer M; Richter C
    Free Radic Biol Med; 2004 Oct; 37(7):1073-80. PubMed ID: 15336323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Activation of the external pathway of NADH oxidation in mitochondria at decreased pH].
    Agureev AP; Altukhov ND; Mokhova EN; Savel'ev IA
    Biokhimiia; 1981 Nov; 46(11):1945-56. PubMed ID: 7317523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Induction of nonselective permeability of the inner membrane in deenergized mitochondria.
    Dedov VN; Demin OV; Chernyak VY; Chernyak BV
    Biochemistry (Mosc); 1999 Jul; 64(7):809-16. PubMed ID: 10424906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Failure of exogenous NADH and cytochrome c to support energy-dependent swelling of mitochondria.
    Lemeshko VV
    Arch Biochem Biophys; 2001 Apr; 388(1):60-6. PubMed ID: 11361141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluoride curcumin derivatives: new mitochondrial uncoupling agents.
    Ligeret H; Barthélémy S; Bouchard Doulakas G; Carrupt PA; Tillement JP; Labidalle S; Morin D
    FEBS Lett; 2004 Jul; 569(1-3):37-42. PubMed ID: 15225605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclosporin A-sensitive cytochrome c release and activation of external pathway of NADH oxidation in liver mitochondria due to pore opening by acidification of phosphate-containing incubation medium.
    Knorre DA; Dedukhova VI; Vyssokikh MY; Mokhova EN
    Biosci Rep; 2003; 23(2-3):67-75. PubMed ID: 14570377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induction of the non-selective mitochondrial pore in lymphoid cells. 1. Permeabilized rat thymocytes.
    Chernyak BV
    Biochemistry (Mosc); 1999 Aug; 64(8):916-21. PubMed ID: 10498808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytochrome C as an amplifier of ROS release in mitochondria.
    Akopova OV; Kolchinskaya LI; Nosar VI; Bouryi VA; Mankovska IN; Sagach VF
    Fiziol Zh (1994); 2012; 58(1):3-12. PubMed ID: 22586905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Oxaloacetate-dependent calcium transport in rat liver mitochondria].
    Zharova TV; Tiulina OV
    Biokhimiia; 1993 Aug; 58(8):1188-98. PubMed ID: 8399766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.