These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 10810744)
21. Investigation of Physicochemical Drug Properties to Prepare Fine Globular Granules Composed of Only Drug Substance in Fluidized Bed Rotor Granulation. Mise R; Iwao Y; Kimura S; Osugi Y; Noguchi S; Itai S Chem Pharm Bull (Tokyo); 2015; 63(12):1070-5. PubMed ID: 26633029 [TBL] [Abstract][Full Text] [Related]
22. HIGH SHEAR GRANULATION PROCESS: ASSESSING IMPACT OF FORMULATION VARIABLES ON GRANULES AND TABLETS CHARACTERISTICS OF HIGH DRUG LOADING FORMULATION USING DESIGN OF EXPERIMENT METHODOLOGY. Fayed MH; Abdel-Rahman SI; Alanazi FK; Ahmed MO; Tawfeek HM; Ali BE Acta Pol Pharm; 2017 Mar; 74(2):551-564. PubMed ID: 29624260 [TBL] [Abstract][Full Text] [Related]
23. Process optimization for continuous extrusion wet granulation. Tan L; Carella AJ; Ren Y; Lo JB Pharm Dev Technol; 2011 Aug; 16(4):302-15. PubMed ID: 20367553 [TBL] [Abstract][Full Text] [Related]
24. Manufacturability and Properties of Granules and Tablets Using the Eco-Friendly Granulation Method Green Fluidized Bed Granulation Compared to Direct Compression. Ishikawa A; Takasaki H; Sakurai A; Katayama T; Wada K; Furuishi T; Fukuzawa K; Obata Y; Yonemochi E Chem Pharm Bull (Tokyo); 2021; 69(5):447-455. PubMed ID: 33952855 [TBL] [Abstract][Full Text] [Related]
25. Effect of particle shape of active pharmaceutical ingredients prepared by fluidized-bed jet-milling on cohesiveness. Fukunaka T; Sawaguchi K; Golman B; Shinohara K J Pharm Sci; 2005 May; 94(5):1004-12. PubMed ID: 15793798 [TBL] [Abstract][Full Text] [Related]
26. Studies on the compressibility of wax matrix granules of acetaminophen and their admixtures with various tableting bases. Uhumwangho MU; Okor RS Pak J Pharm Sci; 2006 Apr; 19(2):103-7. PubMed ID: 16751119 [TBL] [Abstract][Full Text] [Related]
27. Optimization of the granulation process for designing tablets. Miyamoto Y; Ryu A; Sugawara S; Miyajima M; Matsui M; Takayama K; Nagai T Chem Pharm Bull (Tokyo); 1998 Sep; 46(9):1432-7. PubMed ID: 9775438 [TBL] [Abstract][Full Text] [Related]
28. Application of principal component analysis enables to effectively find important physical variables for optimization of fluid bed granulator conditions. Otsuka T; Iwao Y; Miyagishima A; Itai S Int J Pharm; 2011 May; 409(1-2):81-8. PubMed ID: 21371547 [TBL] [Abstract][Full Text] [Related]
29. Investigating the Use of Polymeric Binders in Twin Screw Melt Granulation Process for Improving Compactibility of Drugs. Batra A; Desai D; Serajuddin ATM J Pharm Sci; 2017 Jan; 106(1):140-150. PubMed ID: 27578544 [TBL] [Abstract][Full Text] [Related]
31. Stability and repeatability of a continuous twin screw granulation and drying system. Vercruysse J; Delaet U; Van Assche I; Cappuyns P; Arata F; Caporicci G; De Beer T; Remon JP; Vervaet C Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt B):1031-8. PubMed ID: 23702273 [TBL] [Abstract][Full Text] [Related]
32. Fluid bed granulation of a poorly water soluble, low density, micronized drug: comparison with high shear granulation. Gao JZ; Jain A; Motheram R; Gray DB; Hussain MA Int J Pharm; 2002 Apr; 237(1-2):1-14. PubMed ID: 11955799 [TBL] [Abstract][Full Text] [Related]
33. Melt granulation in fluidized bed: a comparative study of spray-on versus in situ procedure. Mašić I; Ilić I; Dreu R; Ibrić S; Parojčić J; Srčič S Drug Dev Ind Pharm; 2014 Jan; 40(1):23-32. PubMed ID: 23294368 [TBL] [Abstract][Full Text] [Related]
34. A large-scale experimental comparison of batch and continuous technologies in pharmaceutical tablet manufacturing using ethenzamide. Matsunami K; Nagato T; Hasegawa K; Sugiyama H Int J Pharm; 2019 Mar; 559():210-219. PubMed ID: 30682448 [TBL] [Abstract][Full Text] [Related]
35. Evaluation of fast disintegrating tablets of paracetamol prepared from a blend of croscarmellose sodium and Pleurotus tuber-regium powder. Eraga SO; Arhewoh MI; Akpan FE; Iwuagwu MA Pak J Pharm Sci; 2018 Nov; 31(6):2503-2508. PubMed ID: 30473524 [TBL] [Abstract][Full Text] [Related]
36. Particle size distribution and evolution in tablet structure during and after compaction. Fichtner F; Rasmuson A; Alderborn G Int J Pharm; 2005 Mar; 292(1-2):211-25. PubMed ID: 15725568 [TBL] [Abstract][Full Text] [Related]
37. Rapidly disintegrating tablets prepared by the wet compression method: mechanism and optimization. Bi Y; Yonezawa Y; Sunada H J Pharm Sci; 1999 Oct; 88(10):1004-10. PubMed ID: 10514347 [TBL] [Abstract][Full Text] [Related]
38. Enhancing tablet disintegration characteristics of a highly water-soluble high-drug-loading formulation by granulation process. Pandey P; Levins C; Pafiakis S; Zacour B; Bindra DS; Trinh J; Buckley D; Gour S; Sharif S; Stamato H Pharm Dev Technol; 2018 Jul; 23(6):587-595. PubMed ID: 27879156 [TBL] [Abstract][Full Text] [Related]
39. Application of fluidized hot-melt granulation (FHMG) for the preparation of granules for tableting; properties of granules and tablets prepared by FHMG. Kidokoro M; Haramiishi Y; Sagasaki S; Shimizu T; Yamamoto Y Drug Dev Ind Pharm; 2002 Jan; 28(1):67-76. PubMed ID: 11858526 [TBL] [Abstract][Full Text] [Related]
40. Comparison of the granulation behavior of three different excipients in a laboratory fluidized bed granulator using statistical methods. Schinzinger O; Schmidt PC Pharm Dev Technol; 2005; 10(2):175-88. PubMed ID: 15926666 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]