These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 10811219)

  • 1. The origin of red algae and the evolution of chloroplasts.
    Moreira D; Le Guyader H; Philippe H
    Nature; 2000 May; 405(6782):69-72. PubMed ID: 10811219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The phylogenetic position of red algae revealed by multiple nuclear genes from mitochondria-containing eukaryotes and an alternative hypothesis on the origin of plastids.
    Nozaki H; Matsuzaki M; Takahara M; Misumi O; Kuroiwa H; Hasegawa M; Shin-i T; Kohara Y; Ogasawara N; Kuroiwa T
    J Mol Evol; 2003 Apr; 56(4):485-97. PubMed ID: 12664168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene sampling can bias multi-gene phylogenetic inferences: the relationship between red algae and green plants as a case study.
    Inagaki Y; Nakajima Y; Sato M; Sakaguchi M; Hashimoto T
    Mol Biol Evol; 2009 May; 26(5):1171-8. PubMed ID: 19246622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phylogeny of nuclear-encoded plastid-targeted proteins supports an early divergence of glaucophytes within Plantae.
    Reyes-Prieto A; Bhattacharya D
    Mol Biol Evol; 2007 Nov; 24(11):2358-61. PubMed ID: 17827169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phylogenomic analysis identifies red algal genes of endosymbiotic origin in the chromalveolates.
    Li S; Nosenko T; Hackett JD; Bhattacharya D
    Mol Biol Evol; 2006 Mar; 23(3):663-74. PubMed ID: 16357039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phylogenetic positions of Glaucophyta, green plants (Archaeplastida) and Haptophyta (Chromalveolata) as deduced from slowly evolving nuclear genes.
    Nozaki H; Maruyama S; Matsuzaki M; Nakada T; Kato S; Misawa K
    Mol Phylogenet Evol; 2009 Dec; 53(3):872-80. PubMed ID: 19698794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of the glucose-6-phosphate isomerase: the plasticity of primary metabolism in photosynthetic eukaryotes.
    Grauvogel C; Brinkmann H; Petersen J
    Mol Biol Evol; 2007 Aug; 24(8):1611-21. PubMed ID: 17443012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A single birth of all plastids?
    Palmer JD
    Nature; 2000 May; 405(6782):32-3. PubMed ID: 10811205
    [No Abstract]   [Full Text] [Related]  

  • 9. Evolution of glutamine synthetase in heterokonts: evidence for endosymbiotic gene transfer and the early evolution of photosynthesis.
    Robertson DL; Tartar A
    Mol Biol Evol; 2006 May; 23(5):1048-55. PubMed ID: 16495348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probabilistic analysis indicates discordant gene trees in chloroplast evolution.
    Vogl C; Badger J; Kearney P; Li M; Clegg M; Jiang T
    J Mol Evol; 2003 Mar; 56(3):330-40. PubMed ID: 12612836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ancestral chloroplast genome in Mesostigma viride reveals an early branch of green plant evolution.
    Lemieux C; Otis C; Turmel M
    Nature; 2000 Feb; 403(6770):649-52. PubMed ID: 10688199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The chloroplast genome sequence of Chara vulgaris sheds new light into the closest green algal relatives of land plants.
    Turmel M; Otis C; Lemieux C
    Mol Biol Evol; 2006 Jun; 23(6):1324-38. PubMed ID: 16611644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The GapA/B gene duplication marks the origin of Streptophyta (charophytes and land plants).
    Petersen J; Teich R; Becker B; Cerff R; Brinkmann H
    Mol Biol Evol; 2006 Jun; 23(6):1109-18. PubMed ID: 16527864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mosaic origin of the heme biosynthesis pathway in photosynthetic eukaryotes.
    ObornĂ­k M; Green BR
    Mol Biol Evol; 2005 Dec; 22(12):2343-53. PubMed ID: 16093570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new scenario of plastid evolution: plastid primary endosymbiosis before the divergence of the "Plantae," emended.
    Nozaki H
    J Plant Res; 2005 Aug; 118(4):247-55. PubMed ID: 16032387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The highly reduced genome of an enslaved algal nucleus.
    Douglas S; Zauner S; Fraunholz M; Beaton M; Penny S; Deng LT; Wu X; Reith M; Cavalier-Smith T; Maier UG
    Nature; 2001 Apr; 410(6832):1091-6. PubMed ID: 11323671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple gene phylogenies support the monophyly of cryptomonad and haptophyte host lineages.
    Patron NJ; Inagaki Y; Keeling PJ
    Curr Biol; 2007 May; 17(10):887-91. PubMed ID: 17462896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tertiary endosymbiosis driven genome evolution in dinoflagellate algae.
    Yoon HS; Hackett JD; Van Dolah FM; Nosenko T; Lidie KL; Bhattacharya D
    Mol Biol Evol; 2005 May; 22(5):1299-308. PubMed ID: 15746017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chimeric plastid proteome in the Florida "red tide" dinoflagellate Karenia brevis.
    Nosenko T; Lidie KL; Van Dolah FM; Lindquist E; Cheng JF; Bhattacharya D
    Mol Biol Evol; 2006 Nov; 23(11):2026-38. PubMed ID: 16877498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A phylogenomic approach for studying plastid endosymbiosis.
    Moustafa A; Chan CX; Danforth M; Zear D; Ahmed H; Jadhav N; Savage T; Bhattacharya D
    Genome Inform; 2008; 21():165-76. PubMed ID: 19425156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.