BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 10811303)

  • 1. The kinetics of pentoxifylline release from drug-loaded hydroxyapatite implants.
    Slósarczyk A; Szymura-Oleksiak J; Mycek B
    Biomaterials; 2000 Jun; 21(12):1215-21. PubMed ID: 10811303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of sintering temperature over 1,300 degrees C on the physical and compositional properties of porous hydroxyapatite foam.
    Munar ML; Udoh K; Ishikawa K; Matsuya S; Nakagawa M
    Dent Mater J; 2006 Mar; 25(1):51-8. PubMed ID: 16706297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel method to produce hydroxyapatite objects with interconnecting porosity that avoids sintering.
    Tadic D; Beckmann F; Schwarz K; Epple M
    Biomaterials; 2004 Jul; 25(16):3335-40. PubMed ID: 14980428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Creating hierarchical porosity hydroxyapatite scaffolds with osteoinduction by three-dimensional printing and microwave sintering.
    Pei X; Ma L; Zhang B; Sun J; Sun Y; Fan Y; Gou Z; Zhou C; Zhang X
    Biofabrication; 2017 Nov; 9(4):045008. PubMed ID: 28976356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of powder calcination on the sintering of hydroxyapatite.
    Tan CY; Ramesh S; Aw KL; Yeo WH; Hamdi M; Sopyan I
    Med J Malaysia; 2008 Jul; 63 Suppl A():87-8. PubMed ID: 19024997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High release of antibiotic from a novel hydroxyapatite with bimodal pore size distribution.
    Hasegawa M; Sudo A; Komlev VS; Barinov SM; Uchida A
    J Biomed Mater Res B Appl Biomater; 2004 Aug; 70(2):332-9. PubMed ID: 15264316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low temperature method for the production of calcium phosphate fillers.
    Calafiori AR; Marotta M; Nastro A; Martino G
    Biomed Eng Online; 2004 Mar; 3(1):8. PubMed ID: 15035671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and evaluation of cerium oxide-bovine hydroxyapatite composites for biomedical engineering applications.
    Gunduz O; Gode C; Ahmad Z; Gökçe H; Yetmez M; Kalkandelen C; Sahin YM; Oktar FN
    J Mech Behav Biomed Mater; 2014 Jul; 35():70-6. PubMed ID: 24747097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. pH-responsive controlled-release system based on mesoporous bioglass materials capped with mineralized hydroxyapatite.
    Yang C; Guo W; Cui L; Xiang D; Cai K; Lin H; Qu F
    Mater Sci Eng C Mater Biol Appl; 2014 Mar; 36():237-43. PubMed ID: 24433909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HAp physical investigation--the effect of sintering temperature.
    Azran YM; Idris B; Rusnah M; Rohaida CH
    Med J Malaysia; 2004 May; 59 Suppl B():79-80. PubMed ID: 15468828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BMP-2 release and dose-response studies in hydroxyapatite and beta-tricalcium phosphate.
    Tazaki J; Murata M; Akazawa T; Yamamoto M; Ito K; Arisue M; Shibata T; Tabata Y
    Biomed Mater Eng; 2009; 19(2-3):141-6. PubMed ID: 19581707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of hydroxyapatite granule size, porosity, and crystallinity on tissue reaction in vivo. Part A: synthesis, characterization of the materials, and SEM analysis.
    Maté Sánchez de Val JE; Calvo-Guirado JL; Gómez-Moreno G; Pérez-Albacete Martínez C; Mazón P; De Aza PN
    Clin Oral Implants Res; 2016 Nov; 27(11):1331-1338. PubMed ID: 26666991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drug-loaded porous spherical hydroxyapatite granules for bone regeneration.
    Hong MH; Son JS; Kim KM; Han M; Oh DS; Lee YK
    J Mater Sci Mater Med; 2011 Feb; 22(2):349-55. PubMed ID: 21222142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of different sized and porous hydroxyapatite nanorods without organic modifiers and their 5-fluorouracil release performance.
    Ji Y; Wang A; Wu G; Yin H; Liu S; Chen B; Liu F; Li X
    Mater Sci Eng C Mater Biol Appl; 2015 Dec; 57():14-23. PubMed ID: 26354235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of ball milling on the processing of bone substitutes with calcium phosphate powders.
    Bignon A; Chevalier J; Fantozzi G
    J Biomed Mater Res; 2002; 63(5):619-26. PubMed ID: 12209909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Injectable porous hydroxyapatite microparticles as a new carrier for protein and lipophilic drugs.
    Mizushima Y; Ikoma T; Tanaka J; Hoshi K; Ishihara T; Ogawa Y; Ueno A
    J Control Release; 2006 Jan; 110(2):260-265. PubMed ID: 16313993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mild one-pot process for synthesising hydroxyapatite/biomolecule bone scaffolds for sustained and controlled antibiotic release.
    Hess U; Hill S; Treccani L; Streckbein P; Heiss C; Rezwan K
    Biomed Mater; 2015 Jan; 10(1):015013. PubMed ID: 25594361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of dispersant concentration on the pore morphology of hydroxyapatite ceramics for bone tissue engineering.
    Cyster LA; Grant DM; Howdle SM; Rose FR; Irvine DJ; Freeman D; Scotchford CA; Shakesheff KM
    Biomaterials; 2005 Mar; 26(7):697-702. PubMed ID: 15350773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suitability evaluation of sol-gel derived Si-substituted hydroxyapatite for dental and maxillofacial applications through in vitro osteoblasts response.
    Balamurugan A; Rebelo AH; Lemos AF; Rocha JH; Ventura JM; Ferreira JM
    Dent Mater; 2008 Oct; 24(10):1374-80. PubMed ID: 18417203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel one-pot process for near-net-shape fabrication of open-porous resorbable hydroxyapatite/protein composites and in vivo assessment.
    Mueller B; Koch D; Lutz R; Schlegel KA; Treccani L; Rezwan K
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():137-45. PubMed ID: 25063103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.