BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 10811307)

  • 1. Effect of heat treatment of poly(L-lactide) on the response of osteoblast-like MC3T3-E1 cells.
    Ikarashi Y; Tsuchiya T; Nakamura A
    Biomaterials; 2000 Jun; 21(12):1259-67. PubMed ID: 10811307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of osteoblast-like MC3T3-E1 cell responses by poly(lactide).
    Ikarashi Y; Tsuchiya T; Kaniwa M; Nakamura A
    Biol Pharm Bull; 2000 Dec; 23(12):1470-6. PubMed ID: 11145180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing effect of poly(L-lactide) on the differentiation of mouse osteoblast-like MC3T3-E1 cells.
    Isama K; Tsuchiya T
    Biomaterials; 2003 Aug; 24(19):3303-9. PubMed ID: 12763458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of gamma-ray irradiated poly(L-lactide) on the differentiation of mouse osteoblast-like MC3T3-E1 cells.
    Isama K; Tsuchiya T
    J Biomater Sci Polym Ed; 2002; 13(2):153-66. PubMed ID: 12022747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of (poly)-L-lactic acid on the proliferation and differentiation of primary bone cells in vitro.
    Otto TE; Nulend JK; Patka P; Burger EH; Haarman HJ
    J Biomed Mater Res; 1996 Dec; 32(4):513-8. PubMed ID: 8953140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osteogenic differentiation of MC3T3-E1 cells on poly(L-lactide)/Fe3O4 nanofibers with static magnetic field exposure.
    Cai Q; Shi Y; Shan D; Jia W; Duan S; Deng X; Yang X
    Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():166-73. PubMed ID: 26117751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Higher toxicity of dibutyltin and poly-L-lactide with a large amount of tin but lower toxicity of poly-L-lactide of synthetic artificial dura mater exhibited on murine astrocyte cell line.
    Tsuji M; Inoue Y; Sugaya C; Tsunoda M; Sugaya T; Takahashi M; Yuba T; Tsuchiya T; Aizawa Y
    Yakugaku Zasshi; 2010 Jun; 130(6):847-55. PubMed ID: 20519863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pre-osteoblasts on poly(L-lactic acid) and silicon oxide: Influence of fibronectin and albumin adsorption.
    Hindié M; Degat MC; Gaudière F; Gallet O; Van Tassel PR; Pauthe E
    Acta Biomater; 2011 Jan; 7(1):387-94. PubMed ID: 20692384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Induction of osteoblast differentiation phenotype on poly(L-lactic acid) nanofibrous matrix.
    Hu J; Liu X; Ma PX
    Biomaterials; 2008 Oct; 29(28):3815-21. PubMed ID: 18617260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermoresponsive terpolymeric films applicable for osteoblastic cell growth and noninvasive cell sheet harvesting.
    Kim YS; Lim JY; Donahue HJ; Lowe TL
    Tissue Eng; 2005; 11(1-2):30-40. PubMed ID: 15738659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The precision structural regulation of PLLA porous scaffold and its influence on the proliferation and differentiation of MC3T3-E1 cells.
    Ge M; Xue L; Nie T; Ma H; Zhang J
    J Biomater Sci Polym Ed; 2016 Dec; 27(17):1685-1697. PubMed ID: 27569555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro evaluation of porous poly(L-lactic acid) scaffold reinforced by chitin fibers.
    Li X; Liu X; Dong W; Feng Q; Cui F; Uo M; Akasaka T; Watari F
    J Biomed Mater Res B Appl Biomater; 2009 Aug; 90(2):503-9. PubMed ID: 19145630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Osteoblast-like cell (MC3T3-E1) proliferation on bioerodible polymers: an approach towards the development of a bone-bioerodible polymer composite material.
    Elgendy HM; Norman ME; Keaton AR; Laurencin CT
    Biomaterials; 1993; 14(4):263-9. PubMed ID: 8386557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of low-intensity pulsed ultrasound on bioabsorbable self-reinforced poly L-lactide screws.
    Handolin L; Pohjonen T; Partio EK; Arnala I; Törmälä P; Rokkanen P
    Biomaterials; 2002 Jul; 23(13):2733-6. PubMed ID: 12059023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular biocompatibility evaluation of poly(D,L-lactic acid)-modified biomaterials based on long serial analysis of gene expression.
    Xiang Y; Wang Y; Luo Y; Zhang B; Xin J; Zheng D
    Colloids Surf B Biointerfaces; 2011 Jul; 85(2):248-61. PubMed ID: 21435849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Porous poly(L-lactic acid) sheet prepared by stretching with starch particles as filler for tissue engineering.
    Ju D; Han L; Li Z; Chen Y; Wang Q; Bian J; Dong L
    Carbohydr Polym; 2016 May; 142():222-9. PubMed ID: 26917394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Properties of poly(lactic acid)/hydroxyapatite composite through the use of epoxy functional compatibilizers for biomedical application.
    Monmaturapoj N; Srion A; Chalermkarnon P; Buchatip S; Petchsuk A; Noppakunmongkolchai W; Mai-Ngam K
    J Biomater Appl; 2017 Aug; 32(2):175-190. PubMed ID: 28618978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Biocompatibility of poly-L-lactic acid/Bioglass-guided bone regeneration membranes processed with oxygen plasma].
    Fang W; Zeng SG; Gao WF
    Nan Fang Yi Ke Da Xue Xue Bao; 2015 Apr; 35(4):567-72. PubMed ID: 25907946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effects of maleic anhydride-modified poly(D,L-lactic acid) on the adhesion, proliferation and differentiation of osteoblasts].
    Xiang Y; Wang Y; Luo Y; Zhang B; Xin J; Zheng D
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2011 Aug; 28(4):753-7. PubMed ID: 21936375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of engineered low-modulus Mg/PLLA composites as potential orthopaedic implants: An in vitro and in vivo study.
    Yu X; Huang W; Zhao D; Yang K; Tan L; Zhang X; Li J; Zhang M; Zhang S; Liu T; Wu B; Qu M; Duan R; Yuan Y
    Colloids Surf B Biointerfaces; 2019 Feb; 174():280-290. PubMed ID: 30469049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.