These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 10811431)
1. Search for retrogressive reactions accompanying demineralization in native and air-oxidized coals. Hagaman EW; Farrow L; Galipo EG Solid State Nucl Magn Reson; 2000 May; 16(1-2):69-75. PubMed ID: 10811431 [TBL] [Abstract][Full Text] [Related]
2. Stable radicals formation in coals undergoing weathering: effect of coal rank. Green U; Aizenshtat Z; Ruthstein S; Cohen H Phys Chem Chem Phys; 2012 Oct; 14(37):13046-52. PubMed ID: 22886081 [TBL] [Abstract][Full Text] [Related]
3. Chemical reactivity of the carbon-centered free radicals and ferrous iron in coals: role of bioavailable Fe2+ in coal workers pneumoconiosis. Huang X; Zalma R; Pezerat H Free Radic Res; 1999 Jun; 30(6):439-51. PubMed ID: 10400456 [TBL] [Abstract][Full Text] [Related]
4. Humic acids from oxidized coals I. Elemental composition, titration curves, heavy metals in HA samples, nuclear magnetic resonance spectra of HAs and infrared spectroscopy. Kurková M; Klika Z; Kliková C; Havel J Chemosphere; 2004 Feb; 54(8):1237-45. PubMed ID: 14664853 [TBL] [Abstract][Full Text] [Related]
5. Thermal Stability of Carbon-Centered Radicals Involved in Low-Temperature Oxidation of Bituminous and Lignite Coals as a Function of Temperature. Taub T; Ruthstein S; Cohen H ACS Omega; 2021 Dec; 6(49):33428-33435. PubMed ID: 34926892 [TBL] [Abstract][Full Text] [Related]
6. Study of the pyrolysis of coals of different rank using the ReaxFF reactive force field. Guo L; Zhou Z; Chen L; Shan S; Wang Z J Mol Model; 2019 May; 25(6):174. PubMed ID: 31144031 [TBL] [Abstract][Full Text] [Related]
7. Mercury stable isotopic compositions in coals from major coal producing fields in China and their geochemical and environmental implications. Yin R; Feng X; Chen J Environ Sci Technol; 2014 May; 48(10):5565-74. PubMed ID: 24742360 [TBL] [Abstract][Full Text] [Related]
8. Elucidating the role of stable carbon radicals in the low temperature oxidation of coals by coupled EPR-NMR spectroscopy - a method to characterize surfaces of porous carbon materials. Green U; Keinan-Adamsky K; Attia S; Aizenshtat Z; Goobes G; Ruthstein S; Cohen H Phys Chem Chem Phys; 2014 May; 16(20):9364-70. PubMed ID: 24718808 [TBL] [Abstract][Full Text] [Related]
9. Speciation of nickel in Canadian subbituminous and bituminous feed coals, and their ash by-products. Goodarzi F; Huggins F J Environ Monit; 2004 Oct; 6(10):787-91. PubMed ID: 15480491 [TBL] [Abstract][Full Text] [Related]
10. Naturally Occurring Radioactive Materials in Uranium-Rich Coals and Associated Coal Combustion Residues from China. Lauer N; Vengosh A; Dai S Environ Sci Technol; 2017 Nov; 51(22):13487-13493. PubMed ID: 29116764 [TBL] [Abstract][Full Text] [Related]
11. Structural characterization of hydrogen peroxide-oxidized anthracites by X-ray diffraction, fourier transform infrared spectroscopy, and Raman spectra. Zhang Y; Kang X; Tan J; Frost RL Appl Spectrosc; 2014; 68(7):749-57. PubMed ID: 25014841 [TBL] [Abstract][Full Text] [Related]
12. Nitrosation and Nitration of Fulvic Acid, Peat and Coal with Nitric Acid. Thorn KA; Cox LG PLoS One; 2016; 11(5):e0154981. PubMed ID: 27175784 [TBL] [Abstract][Full Text] [Related]
13. Mapping and prediction of coal workers' pneumoconiosis with bioavailable iron content in the bituminous coals. Huang X; Li W; Attfield MD; Nádas A; Frenkel K; Finkelman RB Environ Health Perspect; 2005 Aug; 113(8):964-8. PubMed ID: 16079064 [TBL] [Abstract][Full Text] [Related]
14. [Content and distribution of fluorine in Chinese coals]. Wu DS; Zheng BS; Tang XY; Wang Y; Liu XJ; Hu J; Finkelman RB Huan Jing Ke Xue; 2005 Jan; 26(1):7-11. PubMed ID: 15859399 [TBL] [Abstract][Full Text] [Related]
15. Geochemistry of vanadium (V) in Chinese coals. Liu Y; Liu G; Qu Q; Qi C; Sun R; Liu H Environ Geochem Health; 2017 Oct; 39(5):967-986. PubMed ID: 27730408 [TBL] [Abstract][Full Text] [Related]
16. Emission characteristics of polycyclic aromatic hydrocarbons from combustion of different residential coals in North China. Liu WX; Dou H; Wei ZC; Chang B; Qiu WX; Liu Y; Tao S Sci Total Environ; 2009 Feb; 407(4):1436-46. PubMed ID: 19036409 [TBL] [Abstract][Full Text] [Related]
17. The distribution, occurrence and environmental effect of mercury in Chinese coals. Zheng L; Liu G; Chou CL Sci Total Environ; 2007 Oct; 384(1-3):374-83. PubMed ID: 17599392 [TBL] [Abstract][Full Text] [Related]
18. Roles of bioavailable iron and calcium in coal dust-induced oxidative stress: possible implications in coal workers' lung disease. Zhang Q; Dai J; Ali A; Chen L; Huang X Free Radic Res; 2002 Mar; 36(3):285-94. PubMed ID: 12071347 [TBL] [Abstract][Full Text] [Related]
19. Effective removal of sulfur components from Brazilian power-coals by ultrasonication (40kHz) in presence of H2O2. Saikia BK; Dalmora AC; Choudhury R; Das T; Taffarel SR; Silva LFO Ultrason Sonochem; 2016 Sep; 32():147-157. PubMed ID: 27150755 [TBL] [Abstract][Full Text] [Related]
20. Tracing sources of coal combustion using stable sulfur isotope ratios in epilithic mosses and coals from China. Xiao HY; Tang CG; Zhu RG; Wang YL; Xiao HW; Liu CQ J Environ Monit; 2011 Aug; 13(8):2243-9. PubMed ID: 21677936 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]