BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 10811619)

  • 21. Characterization of Sno expression in malignant melanoma.
    Poser I; Rothhammer T; Dooley S; Weiskirchen R; Bosserhoff AK
    Int J Oncol; 2005 May; 26(5):1411-7. PubMed ID: 15809735
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Viral ski inhibits retinoblastoma protein (Rb)-mediated transcriptional repression in a dominant negative fashion.
    Tokitou F; Nomura T; Khan MM; Kaul SC; Wadhwa R; Yasukawa T; Kohno I; Ishii S
    J Biol Chem; 1999 Feb; 274(8):4485-8. PubMed ID: 9988677
    [TBL] [Abstract][Full Text] [Related]  

  • 23. SNO pediatric molecular tumor board series: Successful beginnings and future directions.
    Lindsay HB; Erker C; Laughlin S; Huang A
    Neurooncol Adv; 2024; 6(1):vdae076. PubMed ID: 38845692
    [No Abstract]   [Full Text] [Related]  

  • 24. The Drosophila functional Smad suppressing element fuss, a homologue of the human Skor genes, retains pro-oncogenic properties of the Ski/Sno family.
    Rass M; Gizler L; Bayersdorfer F; Irlbeck C; Schramm M; Schneuwly S
    PLoS One; 2022; 17(1):e0262360. PubMed ID: 35030229
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Drosophila fussel gene is required for bitter gustatory neuron differentiation acting within an Rpd3 dependent chromatin modifying complex.
    Rass M; Oestreich S; Guetter S; Fischer S; Schneuwly S
    PLoS Genet; 2019 Feb; 15(2):e1007940. PubMed ID: 30730884
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel system-level approach using RNA-sequencing data identifies miR-30-5p and miR-142a-5p as key regulators of apoptosis in myocardial infarction.
    Kim JO; Park JH; Kim T; Hong SE; Lee JY; Nho KJ; Cho C; Kim YS; Kang WS; Ahn Y; Kim DH
    Sci Rep; 2018 Oct; 8(1):14638. PubMed ID: 30279543
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The regulatory protein SnoN antagonizes activin/Smad2 protein signaling and thereby promotes adipocyte differentiation and obesity in mice.
    Zhu Q; Chang A; Xu A; Luo K
    J Biol Chem; 2018 Sep; 293(36):14100-14111. PubMed ID: 30030373
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transcriptional cofactors Ski and SnoN are major regulators of the TGF-β/Smad signaling pathway in health and disease.
    Tecalco-Cruz AC; Ríos-López DG; Vázquez-Victorio G; Rosales-Alvarez RE; Macías-Silva M
    Signal Transduct Target Ther; 2018; 3():15. PubMed ID: 29892481
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deregulation of Negative Controls on TGF-β1 Signaling in Tumor Progression.
    Tang J; Gifford CC; Samarakoon R; Higgins PJ
    Cancers (Basel); 2018 May; 10(6):. PubMed ID: 29799477
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SnoN facilitates ALK1-Smad1/5 signaling during embryonic angiogenesis.
    Zhu Q; Kim YH; Wang D; Oh SP; Luo K
    J Cell Biol; 2013 Sep; 202(6):937-50. PubMed ID: 24019535
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Arkadia regulates tumor metastasis by modulation of the TGF-β pathway.
    Briones-Orta MA; Levy L; Madsen CD; Das D; Erker Y; Sahai E; Hill CS
    Cancer Res; 2013 Mar; 73(6):1800-10. PubMed ID: 23467611
    [TBL] [Abstract][Full Text] [Related]  

  • 32. fussel (fuss)--A negative regulator of BMP signaling in Drosophila melanogaster.
    Fischer S; Bayersdorfer F; Harant E; Reng R; Arndt S; Bosserhoff AK; Schneuwly S
    PLoS One; 2012; 7(8):e42349. PubMed ID: 22879948
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SnoN suppresses maturation of chondrocytes by mediating signal cross-talk between transforming growth factor-β and bone morphogenetic protein pathways.
    Kawamura I; Maeda S; Imamura K; Setoguchi T; Yokouchi M; Ishidou Y; Komiya S
    J Biol Chem; 2012 Aug; 287(34):29101-13. PubMed ID: 22767605
    [TBL] [Abstract][Full Text] [Related]  

  • 34. SnoN signaling in proliferating cells and postmitotic neurons.
    Bonni S; Bonni A
    FEBS Lett; 2012 Jul; 586(14):1977-83. PubMed ID: 22710173
    [TBL] [Abstract][Full Text] [Related]  

  • 35. SnoN in regulation of embryonic development and tissue morphogenesis.
    Zhu Q; Luo K
    FEBS Lett; 2012 Jul; 586(14):1971-6. PubMed ID: 22710172
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transforming growth factor-β/SMAD Target gene SKIL is negatively regulated by the transcriptional cofactor complex SNON-SMAD4.
    Tecalco-Cruz AC; Sosa-Garrocho M; Vázquez-Victorio G; Ortiz-García L; Domínguez-Hüttinger E; Macías-Silva M
    J Biol Chem; 2012 Aug; 287(32):26764-76. PubMed ID: 22674574
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Alterations in the Smad pathway in human cancers.
    Samanta D; Datta PK
    Front Biosci (Landmark Ed); 2012 Jan; 17(4):1281-93. PubMed ID: 22201803
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Crosstalk of TGF-β and estrogen receptor signaling in breast cancer.
    Band AM; Laiho M
    J Mammary Gland Biol Neoplasia; 2011 Jun; 16(2):109-15. PubMed ID: 21390570
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Suppression of p53 activity through the cooperative action of Ski and histone deacetylase SIRT1.
    Inoue Y; Iemura S; Natsume T; Miyazawa K; Imamura T
    J Biol Chem; 2011 Feb; 286(8):6311-20. PubMed ID: 21149449
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SnoN in mammalian development, function and diseases.
    Jahchan NS; Luo K
    Curr Opin Pharmacol; 2010 Dec; 10(6):670-5. PubMed ID: 20822955
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.