BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

813 related articles for article (PubMed ID: 10811794)

  • 1. Photosynthetic and respiratory acclimation and growth response of Antarctic vascular plants to contrasting temperature regimes.
    Xiong FS; Mueller EC; Day TA
    Am J Bot; 2000 May; 87(5):700-10. PubMed ID: 10811794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Higher growth temperatures decreased net carbon assimilation and biomass accumulation of northern red oak seedlings near the southern limit of the species range.
    Wertin TM; McGuire MA; Teskey RO
    Tree Physiol; 2011 Dec; 31(12):1277-88. PubMed ID: 21937670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High temperature acclimation of C4 photosynthesis is linked to changes in photosynthetic biochemistry.
    Dwyer SA; Ghannoum O; Nicotra A; von Caemmerer S
    Plant Cell Environ; 2007 Jan; 30(1):53-66. PubMed ID: 17177876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Urban environment of New York City promotes growth in northern red oak seedlings.
    Searle SY; Turnbull MH; Boelman NT; Schuster WS; Yakir D; Griffin KL
    Tree Physiol; 2012 Apr; 32(4):389-400. PubMed ID: 22491523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenotypic plasticity and growth temperature: understanding interspecific variability.
    Atkin OK; Loveys BR; Atkinson LJ; Pons TL
    J Exp Bot; 2006; 57(2):267-81. PubMed ID: 16371402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cold-tolerant crop species have greater temperature homeostasis of leaf respiration and photosynthesis than cold-sensitive species.
    Yamori W; Noguchi K; Hikosaka K; Terashima I
    Plant Cell Physiol; 2009 Feb; 50(2):203-15. PubMed ID: 19054809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Does growth irradiance affect temperature dependence and thermal acclimation of leaf respiration? Insights from a Mediterranean tree with long-lived leaves.
    Zaragoza-Castells J; Sánchez-Gómez D; Valladares F; Hurry V; Atkin OK
    Plant Cell Environ; 2007 Jul; 30(7):820-33. PubMed ID: 17547654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of ultraviolet-B radiation on growth, hydroxycinnamic acids and flavonoids of Deschampsia antarctica during Springtime ozone depletion in Antarctica.
    Ruhland CT; Xiong FS; Clark WD; Day TA
    Photochem Photobiol; 2005; 81(5):1086-93. PubMed ID: 15689180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of antifreeze activity in Antarctic plants.
    Bravo LA; Griffith M
    J Exp Bot; 2005 Apr; 56(414):1189-96. PubMed ID: 15723822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leaf respiratory acclimation to climate: comparisons among boreal and temperate tree species along a latitudinal transect.
    Dillaway DN; Kruger EL
    Tree Physiol; 2011 Oct; 31(10):1114-27. PubMed ID: 21990024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Balancing photosynthetic light-harvesting and light-utilization capacities in potato leaf tissue during acclimation to different growth temperatures.
    Steffen KL; Wheeler RM; Arora R; Palta JP; Tibbitts TW
    Physiol Plant; 1995; 94(1):51-6. PubMed ID: 11538413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acclimation to short-term low temperatures in two Eucalyptus globulus clones with contrasting drought resistance.
    Costa E Silva F; Shvaleva A; Broetto F; Ortuño MF; Rodrigues ML; Almeida MH; Chaves MM; Pereira JS
    Tree Physiol; 2009 Jan; 29(1):77-86. PubMed ID: 19203934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Warmer Temperatures Affect the
    Sierra-Almeida A; Cavieres LA; Bravo LA
    Front Plant Sci; 2018; 9():1456. PubMed ID: 30349551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical and growth acclimation of birch to night temperatures: genotypic similarities and differences.
    Mäenpää M; Ossipov V; Kontunen-Soppela S; Keinänen M; Rousi M; Oksanen E
    Plant Biol (Stuttg); 2013 Jan; 15 Suppl 1():36-43. PubMed ID: 22612878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Occurrence of the non-native annual bluegrass on the Antarctic mainland and its negative effects on native plants.
    Molina-Montenegro MA; Carrasco-Urra F; Rodrigo C; Convey P; Valladares F; Gianoli E
    Conserv Biol; 2012 Aug; 26(4):717-23. PubMed ID: 22624790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal acclimation of leaf respiration of tropical trees and lianas: response to experimental canopy warming, and consequences for tropical forest carbon balance.
    Slot M; Rey-Sánchez C; Gerber S; Lichstein JW; Winter K; Kitajima K
    Glob Chang Biol; 2014 Sep; 20(9):2915-26. PubMed ID: 24604769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The temperature response of C(3) and C(4) photosynthesis.
    Sage RF; Kubien DS
    Plant Cell Environ; 2007 Sep; 30(9):1086-106. PubMed ID: 17661749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of solar ultraviolet-B radiation on Antarctic terrestrial plants: results from a 4-year field study.
    Day TA; Ruhland CT; Xiong FS
    J Photochem Photobiol B; 2001 Sep; 62(1-2):78-87. PubMed ID: 11693369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon fluxes acclimate more strongly to elevated growth temperatures than to elevated CO2 concentrations in a northern conifer.
    Kroner Y; Way DA
    Glob Chang Biol; 2016 Aug; 22(8):2913-28. PubMed ID: 26728638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elevated temperatures increase leaf senescence and root secondary metabolite concentrations in the understory herb Panax quinquefolius (Araliaceae).
    Jochum GM; Mudge KW; Thomas RB
    Am J Bot; 2007 May; 94(5):819-26. PubMed ID: 21636451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 41.