BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 10811810)

  • 1. Role of coatomer and phospholipids in GTPase-activating protein-dependent hydrolysis of GTP by ADP-ribosylation factor-1.
    Szafer E; Pick E; Rotman M; Zuck S; Huber I; Cassel D
    J Biol Chem; 2000 Aug; 275(31):23615-9. PubMed ID: 10811810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of GTP hydrolysis on ADP-ribosylation factor-1 at the Golgi membrane.
    Szafer E; Rotman M; Cassel D
    J Biol Chem; 2001 Dec; 276(51):47834-9. PubMed ID: 11592960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic analysis of Arf GAP1 indicates a regulatory role for coatomer.
    Luo R; Randazzo PA
    J Biol Chem; 2008 Aug; 283(32):21965-77. PubMed ID: 18541532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple and stepwise interactions between coatomer and ADP-ribosylation factor-1 (Arf1)-GTP.
    Sun Z; Anderl F; Fröhlich K; Zhao L; Hanke S; Brügger B; Wieland F; Béthune J
    Traffic; 2007 May; 8(5):582-93. PubMed ID: 17451557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differences between AGAP1, ASAP1 and Arf GAP1 in substrate recognition: interaction with the N-terminus of Arf1.
    Yoon HY; Jacques K; Nealon B; Stauffer S; Premont RT; Randazzo PA
    Cell Signal; 2004 Sep; 16(9):1033-44. PubMed ID: 15212764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arf1 dissociates from the clathrin adaptor GGA prior to being inactivated by Arf GTPase-activating proteins.
    Jacques KM; Nie Z; Stauffer S; Hirsch DS; Chen LX; Stanley KT; Randazzo PA
    J Biol Chem; 2002 Dec; 277(49):47235-41. PubMed ID: 12376537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and functional analysis of the ARF1-ARFGAP complex reveals a role for coatomer in GTP hydrolysis.
    Goldberg J
    Cell; 1999 Mar; 96(6):893-902. PubMed ID: 10102276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An activating mutation in ARF1 stabilizes coatomer binding to Golgi membranes.
    Teal SB; Hsu VW; Peters PJ; Klausner RD; Donaldson JG
    J Biol Chem; 1994 Feb; 269(5):3135-8. PubMed ID: 8106346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ADP ribosylation factor 1 mutants identify a phospholipase D effector region and reveal that phospholipase D participates in lysosomal secretion but is not sufficient for recruitment of coatomer I.
    Jones DH; Bax B; Fensome A; Cockcroft S
    Biochem J; 1999 Jul; 341 ( Pt 1)(Pt 1):185-92. PubMed ID: 10377261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of the N terminus of ADP-ribosylation factor with the PH domain of the GTPase-activating protein ASAP1 requires phosphatidylinositol 4,5-bisphosphate.
    Roy NS; Jian X; Soubias O; Zhai P; Hall JR; Dagher JN; Coussens NP; Jenkins LM; Luo R; Akpan IO; Hall MD; Byrd RA; Yohe ME; Randazzo PA
    J Biol Chem; 2019 Nov; 294(46):17354-17370. PubMed ID: 31591270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A kinetic proof-reading mechanism for protein sorting.
    Weiss M; Nilsson T
    Traffic; 2003 Feb; 4(2):65-73. PubMed ID: 12559033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arf GAP2 is positively regulated by coatomer and cargo.
    Luo R; Ha VL; Hayashi R; Randazzo PA
    Cell Signal; 2009 Jul; 21(7):1169-79. PubMed ID: 19296914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutational analysis of the Arf1*GTP/Arf GAP interface reveals an Arf1 mutant that selectively affects the Arf GAP ASAP1.
    Luo R; Jacques K; Ahvazi B; Stauffer S; Premont RT; Randazzo PA
    Curr Biol; 2005 Dec; 15(23):2164-9. PubMed ID: 16332543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of ADP-ribosylation factor 1 GTPase-activating protein by phosphatidylcholine-derived diacylglycerols.
    Antonny B; Huber I; Paris S; Chabre M; Cassel D
    J Biol Chem; 1997 Dec; 272(49):30848-51. PubMed ID: 9388229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissection of COPI and Arf1 dynamics in vivo and role in Golgi membrane transport.
    Presley JF; Ward TH; Pfeifer AC; Siggia ED; Phair RD; Lippincott-Schwartz J
    Nature; 2002 May; 417(6885):187-93. PubMed ID: 12000962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of protein-phospholipid interactions in the activation of ARF1 by the guanine nucleotide exchange factor Arno.
    Paris S; Béraud-Dufour S; Robineau S; Bigay J; Antonny B; Chabre M; Chardin P
    J Biol Chem; 1997 Aug; 272(35):22221-6. PubMed ID: 9268368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of the GTP-binding and GTPase-activating domains of ARD1 involves the effector region of the ADP-ribosylation factor domain.
    Vitale N; Moss J; Vaughan M
    J Biol Chem; 1997 Feb; 272(7):3897-904. PubMed ID: 9020091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. COPI vesicles accumulating in the presence of a GTP restricted arf1 mutant are depleted of anterograde and retrograde cargo.
    Pepperkok R; Whitney JA; Gomez M; Kreis TE
    J Cell Sci; 2000 Jan; 113 ( Pt 1)():135-44. PubMed ID: 10591632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane curvature and the control of GTP hydrolysis in Arf1 during COPI vesicle formation.
    Antonny B; Bigay J; Casella JF; Drin G; Mesmin B; Gounon P
    Biochem Soc Trans; 2005 Aug; 33(Pt 4):619-22. PubMed ID: 16042557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myristoylation-facilitated binding of the G protein ARF1GDP to membrane phospholipids is required for its activation by a soluble nucleotide exchange factor.
    Franco M; Chardin P; Chabre M; Paris S
    J Biol Chem; 1996 Jan; 271(3):1573-8. PubMed ID: 8576155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.