BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 10811849)

  • 1. Osmotic water permeabilities of cultured, well-differentiated normal and cystic fibrosis airway epithelia.
    Matsui H; Davis CW; Tarran R; Boucher RC
    J Clin Invest; 2000 May; 105(10):1419-27. PubMed ID: 10811849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Abnormal surface liquid pH regulation by cultured cystic fibrosis bronchial epithelium.
    Coakley RD; Grubb BR; Paradiso AM; Gatzy JT; Johnson LG; Kreda SM; O'Neal WK; Boucher RC
    Proc Natl Acad Sci U S A; 2003 Dec; 100(26):16083-8. PubMed ID: 14668433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated acquisition and analysis of airway surface liquid height by confocal microscopy.
    Choi HC; Kim CS; Tarran R
    Am J Physiol Lung Cell Mol Physiol; 2015 Jul; 309(2):L109-18. PubMed ID: 26001773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-genomic estrogen regulation of ion transport and airway surface liquid dynamics in cystic fibrosis bronchial epithelium.
    Saint-Criq V; Kim SH; Katzenellenbogen JA; Harvey BJ
    PLoS One; 2013; 8(11):e78593. PubMed ID: 24223826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of airway tight junctions by proinflammatory cytokines.
    Coyne CB; Vanhook MK; Gambling TM; Carson JL; Boucher RC; Johnson LG
    Mol Biol Cell; 2002 Sep; 13(9):3218-34. PubMed ID: 12221127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ion and fluid transport properties of small airways in cystic fibrosis.
    Blouquit S; Regnier A; Dannhoffer L; Fermanian C; Naline E; Boucher R; Chinet T
    Am J Respir Crit Care Med; 2006 Aug; 174(3):299-305. PubMed ID: 16645176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soluble mediators, not cilia, determine airway surface liquid volume in normal and cystic fibrosis superficial airway epithelia.
    Tarran R; Trout L; Donaldson SH; Boucher RC
    J Gen Physiol; 2006 May; 127(5):591-604. PubMed ID: 16636206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimulation of aquaporin-5 and transepithelial water permeability in human airway epithelium by hyperosmotic stress.
    Pedersen PS; Braunstein TH; Jørgensen A; Larsen PL; Holstein-Rathlou NH; Frederiksen O
    Pflugers Arch; 2007 Mar; 453(6):777-85. PubMed ID: 17043812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyperviscous airway periciliary and mucous liquid layers in cystic fibrosis measured by confocal fluorescence photobleaching.
    Derichs N; Jin BJ; Song Y; Finkbeiner WE; Verkman AS
    FASEB J; 2011 Jul; 25(7):2325-32. PubMed ID: 21427214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential effects of cyclic and constant stress on ATP release and mucociliary transport by human airway epithelia.
    Button B; Picher M; Boucher RC
    J Physiol; 2007 Apr; 580(Pt. 2):577-92. PubMed ID: 17317749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluid absorption related to ion transport in human airway epithelial spheroids.
    Pedersen PS; Holstein-Rathlou NH; Larsen PL; Qvortrup K; Frederiksen O
    Am J Physiol; 1999 Dec; 277(6):L1096-103. PubMed ID: 10600878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of apical hyperosmotic sodium challenge and amiloride on sodium transport in human bronchial epithelial cells from cystic fibrosis donors.
    Rasgado-Flores H; Krishna Mandava V; Siman H; Van Driessche W; Pilewski JM; Randell SH; Bridges RJ
    Am J Physiol Cell Physiol; 2013 Dec; 305(11):C1114-22. PubMed ID: 23986197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defective fluid transport by cystic fibrosis airway epithelia.
    Smith JJ; Karp PH; Welsh MJ
    J Clin Invest; 1994 Mar; 93(3):1307-11. PubMed ID: 8132771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of hyperosmotic stress on cultured airway epithelial cells.
    Nilsson H; Dragomir A; Ahlander A; Johannesson M; Roomans GM
    Cell Tissue Res; 2007 Nov; 330(2):257-69. PubMed ID: 17768643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Paracellular bicarbonate flux across human cystic fibrosis airway epithelia tempers changes in airway surface liquid pH.
    Thornell IM; Rehman T; Pezzulo AA; Welsh MJ
    J Physiol; 2020 Oct; 598(19):4307-4320. PubMed ID: 32627187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Culture with apically applied healthy or disease sputum alters the airway surface liquid proteome and ion transport across human bronchial epithelial cells.
    Woodall M; Reidel B; Kesimer M; Tarran R; Baines DL
    Am J Physiol Cell Physiol; 2021 Dec; 321(6):C954-C963. PubMed ID: 34613844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A physiologically-motivated model of cystic fibrosis liquid and solute transport dynamics across primary human nasal epithelia.
    Serrano Castillo F; Bertrand CA; Myerburg MM; Shapiro ME; Corcoran TE; Parker RS
    J Pharmacokinet Pharmacodyn; 2019 Oct; 46(5):457-472. PubMed ID: 31494805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acute regulation of the epithelial sodium channel in airway epithelia by proteases and trafficking.
    Myerburg MM; Harvey PR; Heidrich EM; Pilewski JM; Butterworth MB
    Am J Respir Cell Mol Biol; 2010 Dec; 43(6):712-9. PubMed ID: 20097829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tryptase does not alter transepithelial conductance or paracellular permeability in human airway epithelial cells.
    Chang EH; Lee JH; Zabner J
    Am J Rhinol Allergy; 2010; 24(2):126-8. PubMed ID: 20338110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective response of human airway epithelia to luminal but not serosal solution hypertonicity. Possible role for proximal airway epithelia as an osmolality transducer.
    Willumsen NJ; Davis CW; Boucher RC
    J Clin Invest; 1994 Aug; 94(2):779-87. PubMed ID: 8040333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.