BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 10811894)

  • 1. Domain organization and flavin adenine dinucleotide-binding determinants in the aerotaxis signal transducer Aer of Escherichia coli.
    Bibikov SI; Barnes LA; Gitin Y; Parkinson JS
    Proc Natl Acad Sci U S A; 2000 May; 97(11):5830-5. PubMed ID: 10811894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions between the PAS and HAMP domains of the Escherichia coli aerotaxis receptor Aer.
    Watts KJ; Ma Q; Johnson MS; Taylor BL
    J Bacteriol; 2004 Nov; 186(21):7440-9. PubMed ID: 15489456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic analysis of the HAMP domain of the Aer aerotaxis sensor localizes flavin adenine dinucleotide-binding determinants to the AS-2 helix.
    Ma Q; Johnson MS; Taylor BL
    J Bacteriol; 2005 Jan; 187(1):193-201. PubMed ID: 15601703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Loss- and gain-of-function mutations in the F1-HAMP region of the Escherichia coli aerotaxis transducer Aer.
    Burón-Barral MC; Gosink KK; Parkinson JS
    J Bacteriol; 2006 May; 188(10):3477-86. PubMed ID: 16672601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gain-of-function mutations cluster in distinct regions associated with the signalling pathway in the PAS domain of the aerotaxis receptor, Aer.
    Campbell AJ; Watts KJ; Johnson MS; Taylor BL
    Mol Microbiol; 2010 Aug; 77(3):575-86. PubMed ID: 20545849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Function of the N-terminal cap of the PAS domain in signaling by the aerotaxis receptor Aer.
    Watts KJ; Sommer K; Fry SL; Johnson MS; Taylor BL
    J Bacteriol; 2006 Mar; 188(6):2154-62. PubMed ID: 16513745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PAS domain of the Aer redox sensor requires C-terminal residues for native-fold formation and flavin adenine dinucleotide binding.
    Herrmann S; Ma Q; Johnson MS; Repik AV; Taylor BL
    J Bacteriol; 2004 Oct; 186(20):6782-91. PubMed ID: 15466030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Aer protein and the serine chemoreceptor Tsr independently sense intracellular energy levels and transduce oxygen, redox, and energy signals for Escherichia coli behavior.
    Rebbapragada A; Johnson MS; Harding GP; Zuccarelli AJ; Fletcher HM; Zhulin IB; Taylor BL
    Proc Natl Acad Sci U S A; 1997 Sep; 94(20):10541-6. PubMed ID: 9380671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PAS domain residues involved in signal transduction by the Aer redox sensor of Escherichia coli.
    Repik A; Rebbapragada A; Johnson MS; Haznedar JO; Zhulin IB; Taylor BL
    Mol Microbiol; 2000 May; 36(4):806-16. PubMed ID: 10844669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterial Energy Sensor Aer Modulates the Activity of the Chemotaxis Kinase CheA Based on the Redox State of the Flavin Cofactor.
    Samanta D; Widom J; Borbat PP; Freed JH; Crane BR
    J Biol Chem; 2016 Dec; 291(50):25809-25814. PubMed ID: 27803157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox properties and PAS domain structure of the Escherichia coli energy sensor Aer indicate a multistate sensing mechanism.
    Maschmann ZA; Chua TK; Chandrasekaran S; Ibáñez H; Crane BR
    J Biol Chem; 2022 Dec; 298(12):102598. PubMed ID: 36252616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Minimal requirements for oxygen sensing by the aerotaxis receptor Aer.
    Watts KJ; Johnson MS; Taylor BL
    Mol Microbiol; 2006 Feb; 59(4):1317-26. PubMed ID: 16430703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A signal transducer for aerotaxis in Escherichia coli.
    Bibikov SI; Biran R; Rudd KE; Parkinson JS
    J Bacteriol; 1997 Jun; 179(12):4075-9. PubMed ID: 9190831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The FAD-PAS domain as a sensor for behavioral responses in Escherichia coli.
    Taylor BL; Rebbapragada A; Johnson MS
    Antioxid Redox Signal; 2001 Oct; 3(5):867-79. PubMed ID: 11761333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Signaling interactions between the aerotaxis transducer Aer and heterologous chemoreceptors in Escherichia coli.
    Gosink KK; Burón-Barral MC; Parkinson JS
    J Bacteriol; 2006 May; 188(10):3487-93. PubMed ID: 16672602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Aer protein of Escherichia coli forms a homodimer independent of the signaling domain and flavin adenine dinucleotide binding.
    Ma Q; Roy F; Herrmann S; Taylor BL; Johnson MS
    J Bacteriol; 2004 Nov; 186(21):7456-9. PubMed ID: 15489458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methylation-independent aerotaxis mediated by the Escherichia coli Aer protein.
    Bibikov SI; Miller AC; Gosink KK; Parkinson JS
    J Bacteriol; 2004 Jun; 186(12):3730-7. PubMed ID: 15175286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Topology and boundaries of the aerotaxis receptor Aer in the membrane of Escherichia coli.
    Amin DN; Taylor BL; Johnson MS
    J Bacteriol; 2006 Feb; 188(3):894-901. PubMed ID: 16428392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-function relationships in the HAMP and proximal signaling domains of the aerotaxis receptor Aer.
    Watts KJ; Johnson MS; Taylor BL
    J Bacteriol; 2008 Mar; 190(6):2118-27. PubMed ID: 18203838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemotaxis proteins and transducers for aerotaxis in Pseudomonas aeruginosa.
    Hong CS; Shitashiro M; Kuroda A; Ikeda T; Takiguchi N; Ohtake H; Kato J
    FEMS Microbiol Lett; 2004 Feb; 231(2):247-52. PubMed ID: 14987771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.