BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

654 related articles for article (PubMed ID: 10811920)

  • 21. Mutations in Saccharomyces cerevisiae gene SIR2 can have differential effects on in vivo silencing phenotypes and in vitro histone deacetylation activity.
    Armstrong CM; Kaeberlein M; Imai SI; Guarente L
    Mol Biol Cell; 2002 Apr; 13(4):1427-38. PubMed ID: 11950950
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Substrate specificity and kinetic mechanism of the Sir2 family of NAD+-dependent histone/protein deacetylases.
    Borra MT; Langer MR; Slama JT; Denu JM
    Biochemistry; 2004 Aug; 43(30):9877-87. PubMed ID: 15274642
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanism of sirtuin inhibition by nicotinamide: altering the NAD(+) cosubstrate specificity of a Sir2 enzyme.
    Avalos JL; Bever KM; Wolberger C
    Mol Cell; 2005 Mar; 17(6):855-68. PubMed ID: 15780941
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bypassing Sir2 and O-acetyl-ADP-ribose in transcriptional silencing.
    Chou CC; Li YC; Gartenberg MR
    Mol Cell; 2008 Sep; 31(5):650-9. PubMed ID: 18775325
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Sir2 protein family: A novel deacetylase for gene silencing and more.
    Shore D
    Proc Natl Acad Sci U S A; 2000 Dec; 97(26):14030-2. PubMed ID: 11114164
    [No Abstract]   [Full Text] [Related]  

  • 26. Structural identification of 2'- and 3'-O-acetyl-ADP-ribose as novel metabolites derived from the Sir2 family of beta -NAD+-dependent histone/protein deacetylases.
    Jackson MD; Denu JM
    J Biol Chem; 2002 May; 277(21):18535-44. PubMed ID: 11893743
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Use of substrate analogs and mutagenesis to study substrate binding and catalysis in the Sir2 family of NAD-dependent protein deacetylases.
    Khan AN; Lewis PN
    J Biol Chem; 2006 Apr; 281(17):11702-11. PubMed ID: 16520376
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evidence that Set1, a factor required for methylation of histone H3, regulates rDNA silencing in S. cerevisiae by a Sir2-independent mechanism.
    Bryk M; Briggs SD; Strahl BD; Curcio MJ; Allis CD; Winston F
    Curr Biol; 2002 Jan; 12(2):165-70. PubMed ID: 11818070
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reconstitution of heterochromatin-dependent transcriptional gene silencing.
    Johnson A; Li G; Sikorski TW; Buratowski S; Woodcock CL; Moazed D
    Mol Cell; 2009 Sep; 35(6):769-81. PubMed ID: 19782027
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cell biology. New clue to age control in yeast.
    Strauss E
    Science; 2000 Feb; 287(5456):1181-2. PubMed ID: 10712140
    [No Abstract]   [Full Text] [Related]  

  • 31. SIR2 modifies histone H4-K16 acetylation and affects superhelicity in the ARS region of plasmid chromatin in Saccharomyces cerevisiae.
    Chiani F; Di Felice F; Camilloni G
    Nucleic Acids Res; 2006; 34(19):5426-37. PubMed ID: 17012273
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A unique class of conditional sir2 mutants displays distinct silencing defects in Saccharomyces cerevisiae.
    Garcia SN; Pillus L
    Genetics; 2002 Oct; 162(2):721-36. PubMed ID: 12399383
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The interaction of Alba, a conserved archaeal chromatin protein, with Sir2 and its regulation by acetylation.
    Bell SD; Botting CH; Wardleworth BN; Jackson SP; White MF
    Science; 2002 Apr; 296(5565):148-51. PubMed ID: 11935028
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural basis for the NAD-dependent deacetylase mechanism of Sir2.
    Chang JH; Kim HC; Hwang KY; Lee JW; Jackson SP; Bell SD; Cho Y
    J Biol Chem; 2002 Sep; 277(37):34489-98. PubMed ID: 12091395
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Isonicotinamide enhances Sir2 protein-mediated silencing and longevity in yeast by raising intracellular NAD+ concentration.
    McClure JM; Wierman MB; Maqani N; Smith JS
    J Biol Chem; 2012 Jun; 287(25):20957-66. PubMed ID: 22539348
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efficient transcriptional silencing in Saccharomyces cerevisiae requires a heterochromatin histone acetylation pattern.
    Braunstein M; Sobel RE; Allis CD; Turner BM; Broach JR
    Mol Cell Biol; 1996 Aug; 16(8):4349-56. PubMed ID: 8754835
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Acetylation and accessibility of rDNA chromatin in Saccharomyces cerevisiae in (Delta)top1 and (Delta)sir2 mutants.
    Cioci F; Vogelauer M; Camilloni G
    J Mol Biol; 2002 Sep; 322(1):41-52. PubMed ID: 12215413
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A nonhistone protein-protein interaction required for assembly of the SIR complex and silent chromatin.
    Rudner AD; Hall BE; Ellenberger T; Moazed D
    Mol Cell Biol; 2005 Jun; 25(11):4514-28. PubMed ID: 15899856
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chromosome-wide histone deacetylation by sirtuins prevents hyperactivation of DNA damage-induced signaling upon replicative stress.
    Simoneau A; Ricard É; Weber S; Hammond-Martel I; Wong LH; Sellam A; Giaever G; Nislow C; Raymond M; Wurtele H
    Nucleic Acids Res; 2016 Apr; 44(6):2706-26. PubMed ID: 26748095
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sound silencing: the Sir2 protein and cellular senescence.
    Defossez PA; Lin SJ; McNabb DS
    Bioessays; 2001 Apr; 23(4):327-32. PubMed ID: 11268038
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.