These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 10811966)

  • 1. Direct comparison of NPPB and DPC as probes of CFTR expressed in Xenopus oocytes.
    Zhang ZR; Zeltwanger S; McCarty NA
    J Membr Biol; 2000 May; 175(1):35-52. PubMed ID: 10811966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Voltage-dependent block of the cystic fibrosis transmembrane conductance regulator Cl- channel by two closely related arylaminobenzoates.
    McCarty NA; McDonough S; Cohen BN; Riordan JR; Davidson N; Lester HA
    J Gen Physiol; 1993 Jul; 102(1):1-23. PubMed ID: 8397274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and ionic determinants of 5-nitro-2-(3-phenylprophyl-amino)-benzoic acid block of the CFTR chloride channel.
    Walsh KB; Long KJ; Shen X
    Br J Pharmacol; 1999 May; 127(2):369-76. PubMed ID: 10385235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction between permeation and gating in a putative pore domain mutant in the cystic fibrosis transmembrane conductance regulator.
    Zhang ZR; McDonough SI; McCarty NA
    Biophys J; 2000 Jul; 79(1):298-313. PubMed ID: 10866956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-activity analysis of a CFTR channel potentiator: Distinct molecular parts underlie dual gating effects.
    Csanády L; Töröcsik B
    J Gen Physiol; 2014 Oct; 144(4):321-36. PubMed ID: 25267914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrates of multidrug resistance-associated proteins block the cystic fibrosis transmembrane conductance regulator chloride channel.
    Linsdell P; Hanrahan JW
    Br J Pharmacol; 1999 Mar; 126(6):1471-7. PubMed ID: 10217542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arylaminobenzoate block of the cardiac cyclic AMP-dependent chloride current.
    Walsh KB; Wang C
    Mol Pharmacol; 1998 Mar; 53(3):539-46. PubMed ID: 9495822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of anion transport blockers on CFTR in the human sweat duct.
    Reddy MM; Quinton PM
    J Membr Biol; 2002 Sep; 189(1):15-25. PubMed ID: 12202948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of chloride channel blockers on the cardiac CFTR chloride and L-type calcium currents.
    Walsh KB; Wang C
    Cardiovasc Res; 1996 Aug; 32(2):391-9. PubMed ID: 8796127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cl- transport by cystic fibrosis transmembrane conductance regulator (CFTR) contributes to the inhibition of epithelial Na+ channels (ENaCs) in Xenopus oocytes co-expressing CFTR and ENaC.
    Briel M; Greger R; Kunzelmann K
    J Physiol; 1998 May; 508 ( Pt 3)(Pt 3):825-36. PubMed ID: 9518736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Colonic Cl channel blockade by three classes of compounds.
    Singh AK; Afink GB; Venglarik CJ; Wang RP; Bridges RJ
    Am J Physiol; 1991 Jul; 261(1 Pt 1):C51-63. PubMed ID: 1713412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-dependent interactions of glibenclamide with CFTR: kinetically complex block of macroscopic currents.
    Zhang ZR; Cui G; Zeltwanger S; McCarty NA
    J Membr Biol; 2004 Oct; 201(3):139-55. PubMed ID: 15711774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-specificity of chloride channel blockers in rat cerebral arteries: block of the L-type calcium channel.
    Doughty JM; Miller AL; Langton PD
    J Physiol; 1998 Mar; 507 ( Pt 2)(Pt 2):433-9. PubMed ID: 9518703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Voltage-dependent flickery block of an open cystic fibrosis transmembrane conductance regulator (CFTR) channel pore.
    Zhou Z; Hu S; Hwang TC
    J Physiol; 2001 Apr; 532(Pt 2):435-48. PubMed ID: 11306662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properties of Ca(2+) release-activated Ca(2+) channel block by 5-nitro-2-(3-phenylpropylamino)-benzoic acid in Jurkat cells.
    Li JH; Spence KT; Dargis PG; Christian EP
    Eur J Pharmacol; 2000 Apr; 394(2-3):171-9. PubMed ID: 10771282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel pore-lining residues in CFTR that govern permeation and open-channel block.
    McDonough S; Davidson N; Lester HA; McCarty NA
    Neuron; 1994 Sep; 13(3):623-34. PubMed ID: 7522483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. cAMP-stimulated ion currents in Xenopus oocytes expressing CFTR cRNA.
    Cunningham SA; Worrell RT; Benos DJ; Frizzell RA
    Am J Physiol; 1992 Mar; 262(3 Pt 1):C783-8. PubMed ID: 1372482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effects of monocarboxylic acid derivatives on cardiac ventricular CFTR Cl- channels in guinea pig].
    Zhou SS; Zang YM
    Sheng Li Xue Bao; 1999 Jun; 51(3):297-302. PubMed ID: 11498992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NPPB block of Ca(++)-activated Cl- currents in Xenopus oocytes.
    Wu G; Hamill OP
    Pflugers Arch; 1992 Feb; 420(2):227-9. PubMed ID: 1320252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CFTR-Mediated anion conductance regulates Na(+)-K(+)-pump activity in Calu-3 human airway cells.
    Ito Y; Mizuno Y; Aoyama M; Kume H; Yamaki K
    Biochem Biophys Res Commun; 2000 Jul; 274(1):230-5. PubMed ID: 10903923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.