These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 1081202)

  • 1. Simultaneous changes in fluorescence and optical retardation in single muscle fibres during activity.
    Oetliker H; Baylor SM; Chandler WK
    Nature; 1975 Oct; 257(5528):693-6. PubMed ID: 1081202
    [No Abstract]   [Full Text] [Related]  

  • 2. Birefringence experiments on isolated skeletal muscle fibres suggest a possible signal from the sarcoplasmic reticulum.
    Baylor SM; Oetliker H
    Nature; 1975 Jan; 253(5487):97-101. PubMed ID: 1078600
    [No Abstract]   [Full Text] [Related]  

  • 3. Birefringence signals and tension development in single frog muscle fibres at short stimulus intervals.
    Oetliker H; Schümperli RA
    Experientia; 1979 Apr; 35(4):496-8. PubMed ID: 312211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium release and sarcoplasmic reticulum membrane potential in frog skeletal muscle fibres.
    Baylor SM; Chandler WK; Marshall MW
    J Physiol; 1984 Mar; 348():209-38. PubMed ID: 6716284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contractile activation in slow and twitch muscle fibres of the frog.
    Gilly WF; Hui CS
    Nature; 1977 Mar; 266(5598):186-8. PubMed ID: 300844
    [No Abstract]   [Full Text] [Related]  

  • 6. Birefringence signals from surface and t-system membranes of frog single muscle fibres.
    Baylor SM; Oetliker H
    J Physiol; 1977 Jan; 264(1):199-213. PubMed ID: 300108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of intracellular ruthenium red on excitation-contraction coupling in intact frog skeletal muscle fibres.
    Baylor SM; Hollingworth S; Marshall MW
    J Physiol; 1989 Jan; 408():617-35. PubMed ID: 2476559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Birefringence signals and calcium transients in skeletal muscle.
    Suarez-Kurtz G; Parker I
    Nature; 1977 Dec 22-29; 270(5639):746-8. PubMed ID: 413060
    [No Abstract]   [Full Text] [Related]  

  • 9. Square wave analysis of the Falk-Fatt model in isolated muscle fibres.
    Poledna J; Zachar J; Zacharová D
    Physiol Bohemoslov; 1976; 25(6):569-72. PubMed ID: 139632
    [No Abstract]   [Full Text] [Related]  

  • 10. Comparison of birefringence signals and calcium transients in voltage-clamped cut skeletal muscle fibres of the frog.
    Kovács L; Schümperli RA; Szücs G
    J Physiol; 1983 Aug; 341():579-93. PubMed ID: 6604807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of membrane processes in controlling skeletal muscle function.
    Kovács L
    Acta Physiol Acad Sci Hung; 1981; 57(1):1-8. PubMed ID: 6269349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Valinomycin and excitation-contraction coupling in skeletal muscle fibres of the frog.
    Pape PC; Konishi M; Baylor SM
    J Physiol; 1992 Apr; 449():219-35. PubMed ID: 1326044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium transients in frog slow muscle fibres.
    Miledi R; Parker I; Schalow G
    Nature; 1977 Aug; 268(5622):750-2. PubMed ID: 302420
    [No Abstract]   [Full Text] [Related]  

  • 14. The optical properties of birefringence signals from single muscle fibres.
    Baylor SM; Oetliker H
    J Physiol; 1977 Jan; 264(1):163-98. PubMed ID: 300107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An appraisal of the evidence for a sarcoplasmic reticulum membrane potential and its relation to calcium release in skeletal muscle.
    Oetliker H
    J Muscle Res Cell Motil; 1982 Sep; 3(3):247-72. PubMed ID: 6752197
    [No Abstract]   [Full Text] [Related]  

  • 16. [Activation of contraction and changes in the optic properties of muscle cells].
    Poledna J
    Bratisl Lek Listy; 1987 Aug; 88(2):230-7. PubMed ID: 3499207
    [No Abstract]   [Full Text] [Related]  

  • 17. Increased optical transparency associated with excitation--contraction coupling in voltage-clamped cut skeletal muscle fibres.
    Kovács L; Schneider MF
    Nature; 1977 Feb; 265(5594):556-60. PubMed ID: 299926
    [No Abstract]   [Full Text] [Related]  

  • 18. Excitation-contraction coupling in single muscle fibers and the calcium channel in sarcoplasmic reticulum.
    Desmedt JE; Hainaut K
    Ann N Y Acad Sci; 1978 Apr; 307():433-5. PubMed ID: 360944
    [No Abstract]   [Full Text] [Related]  

  • 19. Excitation-contraction coupling and sarcoplasmic reticulum function in mechanically skinned fibres from fast skeletal muscles of aged mice.
    Plant DR; Lynch GS
    J Physiol; 2002 Aug; 543(Pt 1):169-76. PubMed ID: 12181289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Voltage dependence of depolarization-contraction coupling processes in skeletal muscle cells.
    Lacinová L; Poledna J
    Gen Physiol Biophys; 1990 Apr; 9(2):113-28. PubMed ID: 2358185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.