These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 10814058)
1. Predicting efficient C(60) epoxidation and viable multiple oxide formation by theoretical study. Manoharan M J Org Chem; 2000 Feb; 65(4):1093-8. PubMed ID: 10814058 [TBL] [Abstract][Full Text] [Related]
2. Oxyfunctionalization of Non-Natural Targets by Dioxiranes. 3.(1) Efficient Oxidation of Buckminsterfullerene C(60) with Methyl(trifluoromethyl)dioxirane. Fusco C; Seraglia R; Curci R; Lucchini V J Org Chem; 1999 Oct; 64(22):8363-8368. PubMed ID: 11674759 [TBL] [Abstract][Full Text] [Related]
3. Relative reactivity of peracids versus dioxiranes (DMDO and TFDO) in the epoxidation of alkenes. A combined experimental and theoretical analysis. Bach RD; Dmitrenko O; Adam W; Schambony S J Am Chem Soc; 2003 Jan; 125(4):924-34. PubMed ID: 12537490 [TBL] [Abstract][Full Text] [Related]
4. Are peroxyformic acid and dioxirane electrophilic or nucleophilic oxidants? Deubel DV J Org Chem; 2001 Jun; 66(11):3790-6. PubMed ID: 11374999 [TBL] [Abstract][Full Text] [Related]
5. Oxygen transfer in electrophilic epoxidation probed by Ehinger C; Gordon CP; Copéret C Chem Sci; 2019 Feb; 10(6):1786-1795. PubMed ID: 30842846 [TBL] [Abstract][Full Text] [Related]
6. NMR studies on epoxidations of allenamides. Evidence for formation of nitrogen-substituted allene oxide and spiro-epoxide via trapping experiments. Rameshkumar C; Xiong H; Tracey MR; Berry CR; Yao LJ; Hsung RP J Org Chem; 2002 Feb; 67(4):1339-45. PubMed ID: 11846684 [TBL] [Abstract][Full Text] [Related]
7. Novel pathways for oxygen insertion into unactivated C-H bonds by dioxiranes. Transition structures for stepwise routes via radical pairs and comparison with the concerted pathway. Freccero M; Gandolfi R; Sarzi-Amadè M; Rastelli A J Org Chem; 2003 Feb; 68(3):811-23. PubMed ID: 12558403 [TBL] [Abstract][Full Text] [Related]
8. Dramatic Change of Carbonyl Oxide Reactivity by the Potent Electron-Withdrawing Trifluoromethyl Group. Nojima T; Hirano Y; Ishiguro K; Sawaki Y J Org Chem; 1997 Apr; 62(8):2387-2395. PubMed ID: 11671571 [TBL] [Abstract][Full Text] [Related]
9. Theoretical investigations of substituent effects in dimethyldioxirane epoxidation reactions. Düfert A; Werz DB J Org Chem; 2008 Jul; 73(14):5514-9. PubMed ID: 18549290 [TBL] [Abstract][Full Text] [Related]
10. A proton-shuttle mechanism mediated by the porphyrin in benzene hydroxylation by cytochrome p450 enzymes. de Visser SP; Shaik S J Am Chem Soc; 2003 Jun; 125(24):7413-24. PubMed ID: 12797816 [TBL] [Abstract][Full Text] [Related]
11. Oxyfunctionalization of non-natural targets by dioxiranes. 5. Selective oxidation of hydrocarbons bearing cyclopropyl moieties. D'Accolti L; Dinoi A; Fusco C; Russo A; Curci R J Org Chem; 2003 Oct; 68(20):7806-10. PubMed ID: 14510559 [TBL] [Abstract][Full Text] [Related]
12. Concerning the reactivity of dioxiranes. Observations from experiments and theory. Annese C; D'Accolti L; Dinoi A; Fusco C; Gandolfi R; Curci R J Am Chem Soc; 2008 Jan; 130(4):1197-204. PubMed ID: 18177039 [TBL] [Abstract][Full Text] [Related]
13. Oxidation of some cage hydrocarbons by dioxiranes. Nature of the transition structure for the reaction of C-H bonds with dimethyldioxirane: a comparison of B3PW91 density functional theory with experiment. Grabovskiy SA; Antipin AV; Ivanova EV; Dokichev VA; Tomilov YV; Kabal'nova NN Org Biomol Chem; 2007 Jul; 5(14):2302-10. PubMed ID: 17609762 [TBL] [Abstract][Full Text] [Related]
14. Efficient control of the diastereoselectivity and regioselectivity in the singlet-oxygen ene reaction of chiral oxazolidine-substituted alkenes by a remote urea NH functionality: comparison with dimethyldioxirane and m-chloroperbenzoic acid epoxidations. Adam W; Peters K; Peters EM; Schambony SB J Am Chem Soc; 2001 Aug; 123(30):7228-32. PubMed ID: 11472150 [TBL] [Abstract][Full Text] [Related]
15. Experimental Investigation of the Primary and Secondary Deuterium Kinetic Isotope Effects for Epoxidation of Alkenes and Ethylene with m-Chloroperoxybenzoic Acid. Koerner T; Slebocka-Tilk H; Brown RS J Org Chem; 1999 Jan; 64(1):196-201. PubMed ID: 11674103 [TBL] [Abstract][Full Text] [Related]
16. Enecarbamates as selective substrates in oxidations: chiral-auxiliary-controlled mode selectivity and diastereoselectivity in the [2+2] cycloaddition and ene reaction of singlet oxygen and in the epoxidation by DMD and mCPBA. Adam W; Bosio SG; Turro NJ; Wolff BT J Org Chem; 2004 Mar; 69(5):1704-15. PubMed ID: 14987031 [TBL] [Abstract][Full Text] [Related]
17. Dioxirane Epoxidation of 10-Membered-Ring Stilbene Lactams as Synthetic Precursors to Protoberberines. Rodríguez G; Castedo L; Domínguez D; Saá C; Adam W; Saha-Möller CR J Org Chem; 1999 Feb; 64(3):877-883. PubMed ID: 11674160 [TBL] [Abstract][Full Text] [Related]
18. Olefin epoxidation with hydrogen peroxide catalyzed by lacunary polyoxometalate [gamma-SiW10O34H2O2]4-. Kamata K; Kotani M; Yamaguchi K; Hikichi S; Mizuno N Chemistry; 2007; 13(2):639-48. PubMed ID: 16983707 [TBL] [Abstract][Full Text] [Related]
19. Olefin cis-dihydroxylation versus epoxidation by non-heme iron catalysts: two faces of an Fe(III)-OOH coin. Chen K; Costas M; Kim J; Tipton AK; Que L J Am Chem Soc; 2002 Mar; 124(12):3026-35. PubMed ID: 11902894 [TBL] [Abstract][Full Text] [Related]
20. Role of Fe(IV)-oxo intermediates in stoichiometric and catalytic oxidations mediated by iron pyridine-azamacrocycles. Ye W; Ho DM; Friedle S; Palluccio TD; Rybak-Akimova EV Inorg Chem; 2012 May; 51(9):5006-21. PubMed ID: 22534174 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]