These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Fritsch-Buttenberg-Wiechell rearrangement of magnesium alkylidene carbenoids leading to the formation of alkynes. Kimura T; Sekiguchi K; Ando A; Imafuji A Beilstein J Org Chem; 2021; 17():1352-1359. PubMed ID: 34136014 [TBL] [Abstract][Full Text] [Related]
3. One-pot formation and derivatization of di- and triynes based on the Fritsch-Buttenberg-Wiechell rearrangement. Luu T; Morisaki Y; Cunningham N; Tykwinski RR J Org Chem; 2007 Dec; 72(25):9622-9. PubMed ID: 17999532 [TBL] [Abstract][Full Text] [Related]
4. Probing the alkylidene carbene-strained alkyne equilibrium in polycyclic systems via the Fritsch-Buttenberg-Wiechell rearrangement. Anderson TE; Thamattoor DM; Phillips DL Nat Commun; 2024 Sep; 15(1):8313. PubMed ID: 39333083 [TBL] [Abstract][Full Text] [Related]
5. The Fritsch-Buttenberg-Wiechell rearrangement: modern applications for an old reaction. Jahnke E; Tykwinski RR Chem Commun (Camb); 2010 May; 46(19):3235-49. PubMed ID: 20393642 [TBL] [Abstract][Full Text] [Related]
6. Alkylidenecarbenes, alkylidenecarbenoids, and competing species: which is responsible for vinylic nucleophilic substitution, [1 + 2] cycloadditions, 1,5-CH insertions, and the Fritsch-Buttenberg-Wiechell rearrangement? Knorr R Chem Rev; 2004 Sep; 104(9):3795-850. PubMed ID: 15352780 [No Abstract] [Full Text] [Related]
7. Effect of Transition Metal Fragments on the Reverse Fritsch-Buttenberg-Wiechell Type Ring Contraction Reaction of Metallabenzynes to Metal-Carbene Complexes. Anusha C; De S; Parameswaran P J Phys Chem A; 2018 Mar; 122(8):2160-2167. PubMed ID: 29376351 [TBL] [Abstract][Full Text] [Related]
8. Generation of Nucleophilic Chromium Acetylides from gem-Trichloroalkanes and Chromium Chloride: Synthesis of Propargyl Alcohols. Kashinath D; Tisserand S; Puli N; Falck JR; Baati R European J Org Chem; 2010 Apr; 2010(10):1869-1874. PubMed ID: 21562621 [TBL] [Abstract][Full Text] [Related]
9. Carbanionic rearrangements of halomethylenecyclobutanes. Stereochemistry of the migrating group. Du Z; Erickson KL J Org Chem; 2010 Nov; 75(21):7129-40. PubMed ID: 20925362 [TBL] [Abstract][Full Text] [Related]
15. Double Ring Expansion from an Aromatic [18]Porphyrin(1.1.1.1) to an Antiaromatic [20]Porphyrin(2.1.2.1). Umetani M; Tanaka T; Kim T; Kim D; Osuka A Angew Chem Int Ed Engl; 2016 Jul; 55(28):8095-9. PubMed ID: 27194115 [TBL] [Abstract][Full Text] [Related]
16. Synthesis and stability of a homologous series of triynol natural products and their analogues. Luu T; Tykwinski RR J Org Chem; 2006 Nov; 71(23):8982-5. PubMed ID: 17081037 [TBL] [Abstract][Full Text] [Related]
17. Direct, Sequential, and Stereoselective Alkynylation of C,C-Dibromophosphaalkenes. Shameem MA; Esfandiarfard K; Öberg E; Ott S; Orthaber A Chemistry; 2016 Jul; 22(30):10614-9. PubMed ID: 27310813 [TBL] [Abstract][Full Text] [Related]
18. Synthesis of naturally occurring acetylenes via an alkylidene carbenoid rearrangement. Shun AL; Tykwinski RR J Org Chem; 2003 Aug; 68(17):6810-3. PubMed ID: 12919055 [TBL] [Abstract][Full Text] [Related]
19. Theoretical studies on the intramolecular cyclization of 2,4,6-t-Bu3C6H2P=C: and effects of conjugation between the P=C and aromatic moieties. Yoshifuji M; Ito S Beilstein J Org Chem; 2014; 10():1032-6. PubMed ID: 24991254 [TBL] [Abstract][Full Text] [Related]