These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 10814699)
1. A novel role for nitric oxide in the endogenous degradation of heparan sulfate during recycling of glypican-1 in vascular endothelial cells. Mani K; Jönsson M; Edgren G; Belting M; Fransson LA Glycobiology; 2000 Jun; 10(6):577-86. PubMed ID: 10814699 [TBL] [Abstract][Full Text] [Related]
2. N-unsubstituted glucosamine in heparan sulfate of recycling glypican-1 from suramin-treated and nitrite-deprived endothelial cells. mapping of nitric oxide/nitrite-susceptible glucosamine residues to clustered sites near the core protein. Ding K; Jonsson M; Mani K; Sandgren S; Belting M; Fransson LA J Biol Chem; 2001 Feb; 276(6):3885-94. PubMed ID: 11110783 [TBL] [Abstract][Full Text] [Related]
3. Nitric oxide-dependent processing of heparan sulfate in recycling S-nitrosylated glypican-1 takes place in caveolin-1-containing endosomes. Cheng F; Mani K; van den Born J; Ding K; Belting M; Fransson LA J Biol Chem; 2002 Nov; 277(46):44431-9. PubMed ID: 12226079 [TBL] [Abstract][Full Text] [Related]
4. The heparan sulfate-specific epitope 10E4 is NO-sensitive and partly inaccessible in glypican-1. Mani K; Cheng F; Sandgren S; Van Den Born J; Havsmark B; Ding K; Fransson LA Glycobiology; 2004 Jul; 14(7):599-607. PubMed ID: 15044385 [TBL] [Abstract][Full Text] [Related]
5. Modulations of glypican-1 heparan sulfate structure by inhibition of endogenous polyamine synthesis. Mapping of spermine-binding sites and heparanase, heparin lyase, and nitric oxide/nitrite cleavage sites. Ding K; Sandgren S; Mani K; Belting M; Fransson LA J Biol Chem; 2001 Dec; 276(50):46779-91. PubMed ID: 11577085 [TBL] [Abstract][Full Text] [Related]
6. Recycling of a glycosylphosphatidylinositol-anchored heparan sulphate proteoglycan (glypican) in skin fibroblasts. Fransson LA; Edgren G; Havsmark B; Schmidtchen A Glycobiology; 1995 Jun; 5(4):407-15. PubMed ID: 7579795 [TBL] [Abstract][Full Text] [Related]
7. Glypican (heparan sulfate proteoglycan) is palmitoylated, deglycanated and reglycanated during recycling in skin fibroblasts. Edgren G; Havsmark B; Jönsson M; Fransson LA Glycobiology; 1997 Feb; 7(1):103-12. PubMed ID: 9061369 [TBL] [Abstract][Full Text] [Related]
8. Prion, amyloid beta-derived Cu(II) ions, or free Zn(II) ions support S-nitroso-dependent autocleavage of glypican-1 heparan sulfate. Mani K; Cheng F; Havsmark B; Jönsson M; Belting M; Fransson LA J Biol Chem; 2003 Oct; 278(40):38956-65. PubMed ID: 12732622 [TBL] [Abstract][Full Text] [Related]
9. Copper-dependent autocleavage of glypican-1 heparan sulfate by nitric oxide derived from intrinsic nitrosothiols. Ding K; Mani K; Cheng F; Belting M; Fransson LA J Biol Chem; 2002 Sep; 277(36):33353-60. PubMed ID: 12084716 [TBL] [Abstract][Full Text] [Related]
10. The amyloid precursor protein (APP) of Alzheimer disease and its paralog, APLP2, modulate the Cu/Zn-Nitric Oxide-catalyzed degradation of glypican-1 heparan sulfate in vivo. Cappai R; Cheng F; Ciccotosto GD; Needham BE; Masters CL; Multhaup G; Fransson LA; Mani K J Biol Chem; 2005 Apr; 280(14):13913-20. PubMed ID: 15677459 [TBL] [Abstract][Full Text] [Related]
11. Hypoxia induces NO-dependent release of heparan sulfate in fibroblasts from the Alzheimer mouse Tg2576 by activation of nitrite reduction. Cheng F; Bourseau-Guilmain E; Belting M; Fransson LÅ; Mani K Glycobiology; 2016 Jun; 26(6):623-34. PubMed ID: 26791445 [TBL] [Abstract][Full Text] [Related]
13. Copper-dependent co-internalization of the prion protein and glypican-1. Cheng F; Lindqvist J; Haigh CL; Brown DR; Mani K J Neurochem; 2006 Sep; 98(5):1445-57. PubMed ID: 16923158 [TBL] [Abstract][Full Text] [Related]
14. Shedding of heparan sulfate proteoglycan by stimulated endothelial cells: evidence for proteolysis of cell-surface molecules. Ihrcke NS; Platt JL J Cell Physiol; 1996 Sep; 168(3):625-37. PubMed ID: 8816917 [TBL] [Abstract][Full Text] [Related]
15. Heparan sulfate expression in polarized epithelial cells: the apical sorting of glypican (GPI-anchored proteoglycan) is inversely related to its heparan sulfate content. Mertens G; Van der Schueren B; van den Berghe H; David G J Cell Biol; 1996 Feb; 132(3):487-97. PubMed ID: 8636224 [TBL] [Abstract][Full Text] [Related]
16. S-Nitrosylation of secreted recombinant human glypican-1. Svensson G; Mani K Glycoconj J; 2009 Dec; 26(9):1247-57. PubMed ID: 19479373 [TBL] [Abstract][Full Text] [Related]
17. Glypican-1 is a vehicle for polyamine uptake in mammalian cells: a pivital role for nitrosothiol-derived nitric oxide. Belting M; Mani K; Jönsson M; Cheng F; Sandgren S; Jonsson S; Ding K; Delcros JG; Fransson LA J Biol Chem; 2003 Nov; 278(47):47181-9. PubMed ID: 12972423 [TBL] [Abstract][Full Text] [Related]
18. Involvement of glycosylphosphatidylinositol-linked ceruloplasmin in the copper/zinc-nitric oxide-dependent degradation of glypican-1 heparan sulfate in rat C6 glioma cells. Mani K; Cheng F; Havsmark B; David S; Fransson LA J Biol Chem; 2004 Mar; 279(13):12918-23. PubMed ID: 14707133 [TBL] [Abstract][Full Text] [Related]
19. Endothelial heparan sulfate proteoglycans that bind to L-selectin have glucosamine residues with unsubstituted amino groups. Norgard-Sumnicht K; Varki A J Biol Chem; 1995 May; 270(20):12012-24. PubMed ID: 7538130 [TBL] [Abstract][Full Text] [Related]
20. Biosynthesis of decorin and glypican. Fransson LA; Belting M; Jönsson M; Mani K; Moses J; Oldberg A Matrix Biol; 2000 Aug; 19(4):367-76. PubMed ID: 10963998 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]