These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
398 related articles for article (PubMed ID: 10814729)
1. Antinociception produced by mu opioid receptor activation in the amygdala is partly dependent on activation of mu opioid and neurotensin receptors in the ventral periaqueductal gray. Tershner SA; Helmstetter FJ Brain Res; 2000 May; 865(1):17-26. PubMed ID: 10814729 [TBL] [Abstract][Full Text] [Related]
2. Potentiation of the excitatory action of NMDA in ventrolateral periaqueductal gray by the mu-opioid receptor agonist, DAMGO. Kow LM; Commons KG; Ogawa S; Pfaff DW Brain Res; 2002 May; 935(1-2):87-102. PubMed ID: 12062477 [TBL] [Abstract][Full Text] [Related]
3. mu/delta Cooperativity and opposing kappa-opioid effects in nucleus accumbens-mediated antinociception in the rat. Schmidt BL; Tambeli CH; Levine JD; Gear RW Eur J Neurosci; 2002 Mar; 15(5):861-8. PubMed ID: 11906528 [TBL] [Abstract][Full Text] [Related]
4. Antinociception following application of DAMGO to the basolateral amygdala results from a direct interaction of DAMGO with Mu opioid receptors in the amygdala. Shin MS; Helmstetter FJ Brain Res; 2005 Dec; 1064(1-2):56-65. PubMed ID: 16289487 [TBL] [Abstract][Full Text] [Related]
5. Highly delta selective antagonists in the RVM attenuate the antinociceptive effect of PAG DAMGO. Hirakawa N; Tershner SA; Fields HL Neuroreport; 1999 Oct; 10(15):3125-9. PubMed ID: 10574547 [TBL] [Abstract][Full Text] [Related]
6. Mu-opioid and CB1 cannabinoid receptors of the dorsal periaqueductal gray interplay in the regulation of fear response, but not antinociception. Godoi MM; Junior HZ; da Cunha JM; Zanoveli JM Pharmacol Biochem Behav; 2020 Jul; 194():172938. PubMed ID: 32376258 [TBL] [Abstract][Full Text] [Related]
7. Effect of the {mu} opioid on excitatory and inhibitory synaptic inputs to periaqueductal gray-projecting neurons in the amygdala. Finnegan TF; Chen SR; Pan HL J Pharmacol Exp Ther; 2005 Feb; 312(2):441-8. PubMed ID: 15388784 [TBL] [Abstract][Full Text] [Related]
8. Antinociception following opioid stimulation of the basolateral amygdala is expressed through the periaqueductal gray and rostral ventromedial medulla. Helmstetter FJ; Tershner SA; Poore LH; Bellgowan PS Brain Res; 1998 Jan; 779(1-2):104-18. PubMed ID: 9473612 [TBL] [Abstract][Full Text] [Related]
9. Endogenous opioid peptides acting at mu-opioid receptors in the dorsal horn contribute to midbrain modulation of spinal nociceptive neurons. Budai D; Fields HL J Neurophysiol; 1998 Feb; 79(2):677-87. PubMed ID: 9463431 [TBL] [Abstract][Full Text] [Related]
10. Mu- and delta-opioid receptor mRNAs are expressed in periaqueductal gray neurons projecting to the rostral ventromedial medulla. Wang H; Wessendorf MW Neuroscience; 2002; 109(3):619-34. PubMed ID: 11823071 [TBL] [Abstract][Full Text] [Related]
11. N-methyl-D-aspartate receptor agonism and antagonism within the amygdaloid central nucleus suppresses pain affect: differential contribution of the ventrolateral periaqueductal gray. Spuz CA; Tomaszycki ML; Borszcz GS J Pain; 2014 Dec; 15(12):1305-18. PubMed ID: 25261341 [TBL] [Abstract][Full Text] [Related]
12. Spinal pharmacology of antinociception produced by microinjection of mu or delta opioid receptor agonists in the ventromedial medulla of the rat. Hurley RW; Banfor P; Hammond DL Neuroscience; 2003; 118(3):789-96. PubMed ID: 12710986 [TBL] [Abstract][Full Text] [Related]
13. Opioid-induced release of neurotensin in the periaqueductal gray matter of freely moving rats. Stiller CO; Gustafsson H; Fried K; Brodin E Brain Res; 1997 Nov; 774(1-2):149-58. PubMed ID: 9452203 [TBL] [Abstract][Full Text] [Related]
14. Antinociceptive effect of calcitonin gene-related peptide in the central nucleus of amygdala: activating opioid receptors through amygdala-periaqueductal gray pathway. Xu W; Lundeberg T; Wang YT; Li Y; Yu LC Neuroscience; 2003; 118(4):1015-22. PubMed ID: 12732246 [TBL] [Abstract][Full Text] [Related]
15. Endogenous opioids acting at a medullary mu-opioid receptor contribute to the behavioral antinociception produced by GABA antagonism in the midbrain periaqueductal gray. Roychowdhury SM; Fields HL Neuroscience; 1996 Oct; 74(3):863-72. PubMed ID: 8884782 [TBL] [Abstract][Full Text] [Related]
16. An electrophysiological characterization of the projection from the central nucleus of the amygdala to the periaqueductal gray of the rat: the role of opioid receptors. da Costa Gomez TM; Behbehani MM Brain Res; 1995 Aug; 689(1):21-31. PubMed ID: 8528703 [TBL] [Abstract][Full Text] [Related]
17. Analysis of opioid receptor subtype antagonist effects upon mu opioid agonist-induced feeding elicited from the ventral tegmental area of rats. Lamonte N; Echo JA; Ackerman TF; Christian G; Bodnar RJ Brain Res; 2002 Mar; 929(1):96-100. PubMed ID: 11852035 [TBL] [Abstract][Full Text] [Related]