These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 10815950)

  • 1. High-speed fluorescence detection of explosives-like vapors.
    Albert KJ; Walt DR
    Anal Chem; 2000 May; 72(9):1947-55. PubMed ID: 10815950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards the Development of a Low-Cost Device for the Detection of Explosives Vapors by Fluorescence Quenching of Conjugated Polymers in Solid Matrices.
    Martelo LM; das Neves TFP; Figueiredo J; Marques L; Fedorov A; Charas A; Berberan-Santos MN; Burrows HD
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29099776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oligomer-coated carbon nanotube chemiresistive sensors for selective detection of nitroaromatic explosives.
    Zhang Y; Xu M; Bunes BR; Wu N; Gross DE; Moore JS; Zang L
    ACS Appl Mater Interfaces; 2015 Apr; 7(14):7471-5. PubMed ID: 25823968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic decoding of sensor types within randomly ordered, high-density optical sensor arrays.
    Albert KJ; Gill DS; Pearce TC; Walt DR
    Anal Bioanal Chem; 2002 Apr; 373(8):792-802. PubMed ID: 12194041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vapor recognition with small arrays of polymer-coated microsensors. A comprehensive analysis.
    Park J; Groves WA; Zellers ET
    Anal Chem; 1999 Sep; 71(17):3877-86. PubMed ID: 10489533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly sensitive detection of nitroaromatic explosives using an electrospun nanofibrous sensor based on a novel fluorescent conjugated polymer.
    Long Y; Chen H; Wang H; Peng Z; Yang Y; Zhang G; Li N; Liu F; Pei J
    Anal Chim Acta; 2012 Sep; 744():82-91. PubMed ID: 22935378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and fabrication of optical chemical sensor for detection of nitroaromatic explosives based on fluorescence quenching of phenol red immobilized poly(vinyl alcohol) membrane.
    Zarei AR; Ghazanchayi B
    Talanta; 2016 Apr; 150():162-8. PubMed ID: 26838395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of Explosive Vapors: The Roles of Exciton and Molecular Diffusion in Real-Time Sensing.
    Ali MA; Shoaee S; Fan S; Burn PL; Gentle IR; Meredith P; Shaw PE
    Chemphyschem; 2016 Nov; 17(21):3350-3353. PubMed ID: 27583839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultra trace detection of explosives in air: development of a portable fluorescent detector.
    Caron T; Guillemot M; Montméat P; Veignal F; Perraut F; Prené P; Serein-Spirau F
    Talanta; 2010 Apr; 81(1-2):543-8. PubMed ID: 20188960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multichannel Discriminative Detection of Explosive Vapors with an Array of Nanofibrous Membranes Loaded with Quantum Dots.
    Wu Z; Duan H; Li Z; Guo J; Zhong F; Cao Y; Jia D
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29156627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multimodal Fluorescent Polymer Sensor for Highly Sensitive Detection of Nitroaromatics.
    Kumar V; Maiti B; Chini MK; De P; Satapathi S
    Sci Rep; 2019 May; 9(1):7269. PubMed ID: 31086230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of pure chemical vapors in a thermally cycled porous silica photonic crystal.
    King BH; Wong T; Sailor MJ
    Langmuir; 2011 Jul; 27(13):8576-85. PubMed ID: 21634412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extending the longevity of fluorescence-based sensor arrays using adaptive exposure.
    Bencic-Nagale S; Walt DR
    Anal Chem; 2005 Oct; 77(19):6155-62. PubMed ID: 16194073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence detection and identification of tagging agents and impurities found in explosives.
    Sheaff CN; Eastwood D; Wai CM; Addleman RS
    Appl Spectrosc; 2008 Jul; 62(7):739-46. PubMed ID: 18935822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescent sensors for nitroaromatic compounds based on monolayer assembly of polycyclic aromatics.
    Zhang S; Lü F; Gao L; Ding L; Fang Y
    Langmuir; 2007 Jan; 23(3):1584-90. PubMed ID: 17241091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mixed Vapor Generation Device for delivery of homemade explosives vapor plumes.
    DeGreeff LE; Katilie CJ; Malito M; Giordano B
    Anal Chim Acta; 2018 Dec; 1040():41-48. PubMed ID: 30327112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of spatiotemporal response information from sorption-based sensor arrays to identify and quantify the composition of analyte mixtures.
    Woodka MD; Brunschwig BS; Lewis NS
    Langmuir; 2007 Dec; 23(26):13232-41. PubMed ID: 18001074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of nitrobenzene, DNT, and TNT vapors by quenching of porous silicon photoluminescence.
    Content S; Trogler WC; Sailor MJ
    Chemistry; 2000 Jun; 6(12):2205-13. PubMed ID: 10926227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trace explosives sensor testbed (TESTbed).
    Collins GE; Malito MP; Tamanaha CR; Hammond MH; Giordano BC; Lubrano AL; Field CR; Rogers DA; Jeffries RA; Colton RJ; Rose-Pehrsson SL
    Rev Sci Instrum; 2017 Mar; 88(3):034104. PubMed ID: 28372430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of nitroaromatic explosives by new D-π-A sensing fluorophores on the basis of the pyrimidine scaffold.
    Verbitskiy EV; Baranova AA; Lugovik KI; Shafikov MZ; Khokhlov KO; Cheprakova EM; Rusinov GL; Chupakhin ON; Charushin VN
    Anal Bioanal Chem; 2016 Jun; 408(15):4093-101. PubMed ID: 27020930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.