BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 10816363)

  • 1. Modeling of diffusion and concurrent metabolism in cutaneous tissue.
    Boderke P; Schittkowski K; Wolf M; Merkle HP
    J Theor Biol; 2000 Jun; 204(3):393-407. PubMed ID: 10816363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic and quantitative prediction of aminopeptidase activity in stripped human skin based on the HaCaT cell sheet model.
    Boderke P; Boddé HE; Ponec M; Wolf M; Merkle HP
    J Investig Dermatol Symp Proc; 1998 Aug; 3(2):180-4. PubMed ID: 9734835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physical model relating diffusional transport and concurrent metabolism of peptides in metabolically active cell sheets.
    Steinsträsser I; Sperb R; Merkle HP
    J Pharm Sci; 1995 Nov; 84(11):1332-41. PubMed ID: 8587052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epidermal aminopeptidase activity and metabolism as observed in an organized HaCaT cell sheet model.
    Steinsträsser I; Koopmann K; Merkle HP
    J Pharm Sci; 1997 Mar; 86(3):378-83. PubMed ID: 9050809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of human skin specimens consisting of different skin layers on the result of in vitro permeation experiments.
    Henning A; Neumann D; Kostka KH; Lehr CM; Schaefer UF
    Skin Pharmacol Physiol; 2008; 21(2):81-8. PubMed ID: 18187967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cutaneous metabolism of a dipeptide influences the iontophoretic flux of a concomitant uncharged permeant.
    Altenbach M; Schnyder N; Zimmermann C; Imanidis G
    Int J Pharm; 2006 Jan; 307(2):308-17. PubMed ID: 16310991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicted permeability parameters of human ovarian tissue cells to various cryoprotectants and water.
    Devireddy RV
    Mol Reprod Dev; 2005 Mar; 70(3):333-43. PubMed ID: 15625698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiologically-based toxicokinetic modeling of durene (1,2,3,5-tetramethylbenzene) and isodurene (1,2,4,5-tetramethylbenzene) in humans.
    Jałowiecki P; Janasik B
    Int J Occup Med Environ Health; 2007; 20(2):155-65. PubMed ID: 17638682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cultured skin loaded with tetracycline HCl and chloramphenicol as dermal delivery system: mathematical evaluation of the cultured skin containing antibiotics.
    Hada N; Hasegawa T; Takahashi H; Ishibashi T; Sugibayashi K
    J Control Release; 2005 Nov; 108(2-3):341-50. PubMed ID: 16226333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-silico model of skin penetration based on experimentally determined input parameters. Part II: mathematical modelling of in-vitro diffusion experiments. Identification of critical input parameters.
    Naegel A; Hansen S; Neumann D; Lehr CM; Schaefer UF; Wittum G; Heisig M
    Eur J Pharm Biopharm; 2008 Feb; 68(2):368-79. PubMed ID: 17766097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-silico model of skin penetration based on experimentally determined input parameters. Part I: experimental determination of partition and diffusion coefficients.
    Hansen S; Henning A; Naegel A; Heisig M; Wittum G; Neumann D; Kostka KH; Zbytovska J; Lehr CM; Schaefer UF
    Eur J Pharm Biopharm; 2008 Feb; 68(2):352-67. PubMed ID: 17587558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Short-term iontophoretic and post-iontophoretic transport of model penetrants across excised human epidermis.
    Akomeah FK; Martin GP; Brown MB
    Int J Pharm; 2009 Feb; 367(1-2):162-8. PubMed ID: 18950696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling of diffusion with partitioning in stratum corneum using a finite element model.
    Barbero AM; Frasch HF
    Ann Biomed Eng; 2005 Sep; 33(9):1281-92. PubMed ID: 16133933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling threshold phenomena, metabolic pathways switches and signals in chemostat-cultivated cells: the Crabtree effect in Saccharomyces cerevisiae.
    Thierie J
    J Theor Biol; 2004 Feb; 226(4):483-501. PubMed ID: 14759654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PBPK models in risk assessment--A focus on chloroprene.
    DeWoskin RS
    Chem Biol Interact; 2007 Mar; 166(1-3):352-9. PubMed ID: 17324392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Field study of TCE diffusion profiles below DNAPL to assess aquitard integrity.
    Parker BL; Cherry JA; Chapman SW
    J Contam Hydrol; 2004 Oct; 74(1-4):197-230. PubMed ID: 15358493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cutaneous biotransformation of N-(4-bromobenzoyl)-S,S-dimethyliminosulfurane and its product, 4-bromobenzamide, leading to percutaneous penetration enhancement of drugs: initial evidence using hydrocortisone.
    Sintov AC; Zhang PJ; Michniak-Kohn BB
    J Control Release; 2009 Jan; 133(1):44-51. PubMed ID: 18950667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A three-pathway pore model describes extensive transport data from Mammalian microvascular beds and frog microvessels.
    Wolf MB
    Microcirculation; 2002 Dec; 9(6):497-511. PubMed ID: 12483547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of simultaneous transport and metabolism of ethyl nicotinate in hairless rat skin.
    Sugibayashi K; Hayashi T; Hatanaka T; Ogihara M; Morimoto Y
    Pharm Res; 1996 Jun; 13(6):855-60. PubMed ID: 8792422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.