BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 10816460)

  • 1. Characterization of binding of Candida albicans to small intestinal mucin and its role in adherence to mucosal epithelial cells.
    de Repentigny L; Aumont F; Bernard K; Belhumeur P
    Infect Immun; 2000 Jun; 68(6):3172-9. PubMed ID: 10816460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adherence of Candida strains isolated from the human gastrointestinal tract.
    Biasoli MS; Tosello ME; Magaró HM
    Mycoses; 2002 Dec; 45(11-12):465-9. PubMed ID: 12472722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human oral keratinocyte E-cadherin degradation by Candida albicans and Candida glabrata.
    Pärnänen P; Meurman JH; Samaranayake L; Virtanen I
    J Oral Pathol Med; 2010 Mar; 39(3):275-8. PubMed ID: 20359311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for degradation of gastrointestinal mucin by Candida albicans secretory aspartyl proteinase.
    Colina AR; Aumont F; Deslauriers N; Belhumeur P; de Repentigny L
    Infect Immun; 1996 Nov; 64(11):4514-9. PubMed ID: 8890200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adherence of clinical isolates of Saccharomyces cerevisiae to buccal epithelial cells.
    Murphy AR; Kavanagh KA
    Med Mycol; 2001 Feb; 39(1):123-7. PubMed ID: 11270399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antibody response to the 45 kDa Candida albicans antigen in an animal model and potential role of the antigen in adherence.
    Bujdáková H; Paulovičová E; Borecká-Melkusová S; Gašperík J; Kucharíková S; Kolecka A; Lell C; Jensen DB; Würzner R; Chorvát D; Pichová I
    J Med Microbiol; 2008 Dec; 57(Pt 12):1466-1472. PubMed ID: 19018015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adhesion of Candida parapsilosis to epithelial and acrylic surfaces correlates with cell surface hydrophobicity.
    Panagoda GJ; Ellepola AN; Samaranayake LP
    Mycoses; 2001; 44(1-2):29-35. PubMed ID: 11398638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adherence of different Candida dubliniensis isolates in the presence of fluconazole.
    Borg-von Zepelin M; Niederhaus T; Gross U; Seibold M; Monod M; Tintelnot K
    AIDS; 2002 Jun; 16(9):1237-44. PubMed ID: 12045488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mucosal tissue invasion by Candida albicans is associated with E-cadherin degradation, mediated by transcription factor Rim101p and protease Sap5p.
    Villar CC; Kashleva H; Nobile CJ; Mitchell AP; Dongari-Bagtzoglou A
    Infect Immun; 2007 May; 75(5):2126-35. PubMed ID: 17339363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Candida dubliniensis: phylogeny and putative virulence factors.
    D Gilfillan G; Derek J S; Parkinson T; Coleman DC; Gow NAR
    Microbiology (Reading); 1998 Apr; 144 ( Pt 4)():829-838. PubMed ID: 9579058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adhesion of oral Candida species to human buccal epithelial cells following brief exposure to nystatin.
    Ellepola AN; Panagoda GJ; Samaranayake LP
    Oral Microbiol Immunol; 1999 Dec; 14(6):358-63. PubMed ID: 10895691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative adherence of Candida albicans and Candida dubliniensis to human buccal epithelial cells and extracellular matrix proteins.
    Jordan RP; Williams DW; Moran GP; Coleman DC; Sullivan DJ
    Med Mycol; 2014 Apr; 52(3):254-63. PubMed ID: 24625677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Candida albicans VPS4 contributes differentially to epithelial and mucosal pathogenesis.
    Rane HS; Hardison S; Botelho C; Bernardo SM; Wormley F; Lee SA
    Virulence; 2014; 5(8):810-8. PubMed ID: 25483774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adherence of cell surface mutants of Candida albicans to buccal epithelial cells and analyses of the cell surface proteins of the mutants.
    Fukayama M; Calderone RA
    Infect Immun; 1991 Apr; 59(4):1341-5. PubMed ID: 2004814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adherence of Candida albicans and other Candida species to mucosal epithelial cells.
    King RD; Lee JC; Morris AL
    Infect Immun; 1980 Feb; 27(2):667-74. PubMed ID: 6991423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Candida albicans infection of an in vitro oral epithelial model using confocal laser scanning microscopy.
    Malic S; Hill KE; Ralphs JR; Hayes A; Thomas DW; Potts AJ; Williams DW
    Oral Microbiol Immunol; 2007 Jun; 22(3):188-94. PubMed ID: 17488445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative study of adherence of oral Candida albicans isolates from HIV sero-positive individuals and HIV sero-negative individuals to human buccal epithelial cells.
    Jain PA; Veerabhadrudu K; Kulkarni RD; Ajantha GS; Shubhada C; Amruthkishan U
    Indian J Pathol Microbiol; 2010; 53(3):513-7. PubMed ID: 20699514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adherence of Candida albicans and Candida parapsilosis to epithelial cells correlates with fungal cell surface carbohydrates.
    Lima-Neto RG; Beltrão EI; Oliveira PC; Neves RP
    Mycoses; 2011 Jan; 54(1):23-9. PubMed ID: 19735440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of MAPK/c-Fos induced responses in oral epithelial cells is specific to Candida albicans and Candida dubliniensis hyphae.
    Moyes DL; Murciano C; Runglall M; Kohli A; Islam A; Naglik JR
    Med Microbiol Immunol; 2012 Feb; 201(1):93-101. PubMed ID: 21706283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lower filamentation rates of Candida dubliniensis contribute to its lower virulence in comparison with Candida albicans.
    Stokes C; Moran GP; Spiering MJ; Cole GT; Coleman DC; Sullivan DJ
    Fungal Genet Biol; 2007 Sep; 44(9):920-31. PubMed ID: 17251042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.